Solution :
We have given two baskets :
: 8 apples + 2 bananas + 6 cantaloupes = 16 fruits
: 6 apples + 4 bananas = 10 fruits
A fair coin is made to flipped. If the
results is head, then the fruit is selected from a basket
.
If the flip results in tail, then the fruit is selected from the basket
.
Probability of head P(H) = ![1/2](https://tex.z-dn.net/?f=1%2F2)
Probability of tail P(T) = ![1/2](https://tex.z-dn.net/?f=1%2F2)
if given event is :
B = selected fruit is BANANA
We have to calculate : P(T|B)
Probability of banana if the flip results is head P(B|H) = ![$\frac{2}{16}$](https://tex.z-dn.net/?f=%24%5Cfrac%7B2%7D%7B16%7D%24)
Probability of banana if the flip results is tail P(B|T) = ![$\frac{4}{10}$](https://tex.z-dn.net/?f=%24%5Cfrac%7B4%7D%7B10%7D%24)
From the Bayes' theorem :
Probability of flip results is tail when selected fruit is BANANA.
![$P(T|B) = \frac{P(B|T)\ P(T)}{P(B|T) \ P(T) + P(B|H)\ P(H)}$](https://tex.z-dn.net/?f=%24P%28T%7CB%29%20%3D%20%5Cfrac%7BP%28B%7CT%29%5C%20P%28T%29%7D%7BP%28B%7CT%29%20%5C%20P%28T%29%20%2B%20P%28B%7CH%29%5C%20P%28H%29%7D%24)
![$=\frac{\frac{4}{10} \times \frac{1}{2}} {\frac{4}{10} \times \frac{1}{2} + \frac{2}{16} \times \frac{1}{2}}$](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B%5Cfrac%7B4%7D%7B10%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%7D%20%20%7B%5Cfrac%7B4%7D%7B10%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B2%7D%7B16%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%7D%24)
![$=\frac{\frac{1}{5}}{\frac{1}{5}+\frac{1}{16}}$](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B%5Cfrac%7B1%7D%7B5%7D%7D%7B%5Cfrac%7B1%7D%7B5%7D%2B%5Cfrac%7B1%7D%7B16%7D%7D%24)
![$=\frac{\frac{1}{5}}{\frac{21}{80}}$](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B%5Cfrac%7B1%7D%7B5%7D%7D%7B%5Cfrac%7B21%7D%7B80%7D%7D%24)
![$=\frac{16}{21}$](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B16%7D%7B21%7D%24)
∴ ![$P(\ T|B\ )=\frac{16}{21}$](https://tex.z-dn.net/?f=%24P%28%5C%20T%7CB%5C%20%29%3D%5Cfrac%7B16%7D%7B21%7D%24)