Answer: 18.35 m/s
Explanation:
At the highest point of trajectory, the vertical component of the velocity would be zero and the tennis ball would have horizontal component of velocity.
It is given that the initial velocity of the ball is 32 m/s and it makes 35° with the vertical. Hence the horizontal component of the velocity,
v sin θ = 32 m/s × sin 35° = 18.35 m/s
Hence, at the highest point in its trajectory, the tennis ball would be moving with the speed 18.35 m/s.
Hello.
<span>Any number of disturbances, including loud noise or a skier's motion, can cause an avalanche. Even pollution in the Northeast can find its way to Europe, hitching a ride with prevailing winds and causing avalanches in the Alps. That's because snowpack conditions affect the likelihood of avalanches. Soot warms snow and ice faster, creating melt and weakening snow layers, which promulgates avalanches.
</span>
Have a nice day
I believe that the answer is C. Hope this Helps:)))
Answer:
The correct answer would be Saturn's Cassini Division.
Explanation:
Read about it here.
https://caps.gsfc.nasa.gov/simpson/kingswood/rings/
Hope this helps! :)
Refer to the diagram shown below.
Because of symmetry, equal forces, F, exist between the sphere of mass m and each of the other two spheres.
The acceleration of the sphere with mass m will be vertical as shown.
The gravitational constant is G = 6.67408 x 10⁻¹¹ m³/(kg-s²)
Calculate F.
F = [ (6.67408 x 10⁻¹¹ m³/(kg-s²))*(m kg)*(2.8 kg)]/(1.2 m)²
= 1.2977 x 10⁻¹⁰ m N
The resultant force acting on mass m is
2Fcos(30°) = 2*(1.2977 x 10⁻¹⁰m N)*cos(30°) = 2.2477 x 10⁻¹⁰m N
If the initial acceleration of mass m is a m/s², then
(m kg)(a m/s²) = (2.2477 x 10⁻¹⁰m N)
a = 2.2477 x 10⁻¹⁰ m/s²
Answer:
The magnitude of the acceleration on mass m is 2.25 x 10⁻¹⁰ m/s².
The direction of the acceleration is on a line that joins mass m to the midpoint of the line joining the known masses.