The electrostatic force between two charges is inversely
proportional to the square of the distance between them.
So if you want to multiply the force by, say, ' Q ',
you need to multiply the distance by ( 1 / √Q ) .
We want to multiply the force by 16, so we need to
multiply the distance by ( 1 / √16 ) = ( 1 / 4 ) .
The distance should be changed to 1/4 of what it is now.
Answer:
c. dioptre that's the answer.
The force applied by the competitor is littler than the heaviness of the barbell. At the point when the barbell quickens upward, the power applied by the competitor is more prominent than the heaviness of the barbell. When it decelerates upward, the power applied by the competitor is littler than the heaviness of the barbell.
Answer:
KE₂ = 6000 J
Explanation:
Given that
Potential energy at top U₁= 7000 J
Potential energy at bottom U₂= 1000 J
The kinetic energy at top ,KE₁= 0 J
Lets take kinetic energy at bottom level = KE₂
Now from energy conservation
U₁+ KE₁= U₂+ KE₂
Now by putting the values
U₁+ KE₁= U₂+ KE₂
7000+ 0 = 1000+ KE₂
KE₂ = 7000 - 1000 J
KE₂ = 6000 J
Therefore the kinetic energy at bottom is 6000 J.
Answer:
a) 2.063*10^-4
b) 1.75*10^-4
Explanation:
Given that: d= 1.628 mm = 1.628 x 10-3 I= 12 mA = 12.0 x 10-8 A The Cross-sectional area of the wire is:

a) <em>The Potential difference across a 2.00 in length of a 14-gauge copper </em>
<em> wire: </em>
L= 2.00 m
From Table Copper Resistivity
= 1.72 x 10-8 S1 • m The Resistance of the Copper wire is:

=0.0165Ω
The Potential difference across the copper wire is:
V=IR
=2.063*10^-4
b) The Potential difference if the wire were made of Silver: From Table: Silver Resistivity p= 1.47 x 10-8 S1 • m
The Resistance of the Silver wire is:

=0.014Ω
The Potential difference across the Silver wire is:
V=IR
=1.75*10^-4