Answer:
Explanation:
We know that Impulse = force x time
impulse = change in momentum
change in momentum = force x time
Force F = .285 t -.46t²
Since force is variable
change in momentum = ∫ F dt where F is force
= ∫ .285ti - .46t²j dt
= .285 t² / 2i - .46 t³ / 3 j
When t = 1.9
change in momentum = .285 x 1.9² /2 i - .46 x 1.9³ / 3 j
= .514i - 1.05 j
final momentum
= - 3.1 i + 3.9j +.514i - 1.05j
= - 2.586 i + 2.85j
x component = - 2.586
y component = 2.85
Answer:
Explanation:
- The expression for acceleration of the rolling body on an inclined plane is given as a = gsinФ/1 + k²/R²
- where Ф is the angle of inclination, R is the radius, k is the radius of gyration.
- The potential energy of the system is given as ; PE = mgh
- The potential energy will be constant for ring, cylinder, solid sphere, and hollow sphere.
- The total kinetic energy of the rolling body is ; KE = mv²/2 + Iw²/2
- Hence, the total kinetic energy of the ring, cylinder, solid sphere and hollow sphere will be constant.
2. The moment of inertia of the ring is given as ;
I = mR²
The moment of inertia of the ring is maximum and therefore reaches the bottom last.
The answer is:
C. 361 m/s
The explanation:
To calculate the speed of sound at a given temperature (50°C) we are going to use this formula:
v = 331 + 0.6T
when V is the velocity
and T is the temperature = 50°C
by substitution:
v = 331 + 0.6(50)
v = 361 m/s
So, The correct answer is C.
because of the variation of the motion of the molecules of air with change of temperature so, the velocity (V) of the sound in the air is change with temperature.
The term used to describe the quantity of matter that a body possesses is mass.