Because the elevator moves at a constant speed, it's in equilibrium and the net force acting on it is zero. Then the tension in the cable exactly equals the magnitude of the elevator's weight, which is
(3000 kg) (9.80 m/s²) = 29,400 N
Answer:
greater
Explanation:
the speed of sound in steel is greater than water. the speed of sound in wood is not, In water, the particles are much closer together, and they can quickly transmit vibration energy from one particle to the next. This means that the sound wave travels over four times faster than it would in air, but it takes a lot of energy to start the vibration.
Wood is less dense and force can make a sound.
Answer:
W = 1.06 MJ
Explanation:
- We will use differential calculus to solve this problem.
- Make a differential volume of water in the tank with thickness dx. We see as we traverse up or down the differential volume of water the side length is always constant, hence, its always 8.
- As for the width of the part w we see that it varies as we move up and down the differential element. We will draw a rectangle whose base axis is x and vertical axis is y. we will find the equation of the slant line that comes out to be y = 0.5*x. And the width spans towards both of the sides its going to be 2*y = x.
- Now develop and expression of Force required:
F = p*V*g
F = 1000*(2*0.5*x*8*dx)*g
F = 78480*x*dx
- Now, the work done is given by:
W = F.s
- Where, s is the distance from top of hose to the differential volume:
s = (5 - x)
- We have the work as follows:
dW = 78400*x*(5-x)dx
- Now integrate the following express from 0 to 3 till the tank is empty:
W = 78400*(2.5*x^2 - (1/3)*x^3)
W = 78400*(2.5*3^2 - (1/3)*3^3)
W = 78400*13.5 = 1058400 J
Answer:
distance traveled is a total length of the path traveled between two positions.
Answer:
Explanation: NOTHING IN COMMON