Consider rectangular box with
- length x units (x≥0);
- width 3 units;
- height (8-x) units (8-x≥0, then x≤8).
The volume of the rectangular box can be calculated as

In your case,

Note that maximal possible value of the height can be 8 units (when x=0 - minimal possible length) and the minimal possible height can be 0 units (when x=8 - maximal possible length).
From the attached graph you can see that the greatest x-intercept is x=8, then the height will be minimal and lenght will be maximal.
Then the volume will be V=0 (minimal).
Answer: correct choices are B (the maximum possible length), C (the minimum possible height)
<h3>Answer:</h3>
(x, y) ≈ (1.49021612010, 1.22074408461)
<h3>Explanation:</h3>
This is best solved graphically or by some other machine method. The approximate solution (x=1.49, y=1.221) can be iterated by any of several approaches to refine the values to the ones given above. The values above were obtained using Newton's method iteration.
_____
Setting the y-values equal and squaring both sides of the equation gives ...
... √x = x² -1
... x = (x² -1)² = x⁴ -2x² +1 . . . . . square both sides
... x⁴ -2x² -x +1 = 0 . . . . . polynomial equation in standard form.
By Descarte's rule of signs, we know there are two positive real roots to this equation. From the graph, we know the other two roots are complex. The second positive real root is extraneous, corresponding to the negative branch of the square root function.
Answer:
-28
Step-by-step explanation:
Answer:
Flexibility: Stretching
Endurance: Being able to dance for periods of time