Answer:
in steps
Step-by-step explanation:
DE // BC
m∠ADE = m∠ABC and m∠AED = m∠ACB
∴ ΔADE similar to ΔABC
AB/AD = AC/AE
(AD + DB) / AD = (AE + EC) / AE
AD/AD + DB/AD = AE/AE + EC/AE
1 + DB/AD = 1 + EC/AE
DB/AD = EC/AE (AD/DB = AE/EC)
Answer:
33.94 cms of ribbon
Step-by-step explanation:
Because you need two diagonals to form the x, therefore the amount of ribbon needed is the sum of the distance of both diagonals.
When crossing the diagonal, a rectangular angle is formed, where the diagonal would be the hypotenuse, we know that the distance of the hypotenuse can be calculated by means of the legs, which we know its value (12):
d ^ 2 = a ^ 2 + b ^ 2
a = b = 12
d ^ 2 = 12 ^ 2 + 12 ^ 2
d ^ 2 = 288
d = 288 ^ (1/2)
d = 16.97
16.97 cm is what it measures, a diagonal, therefore tape is needed:
16.97 * 2 = 33.94
A total of 33.94 cms of ribbon is needed
Answer from jmonterrozar
Ginny is correct. Five quarters makes it $1.25 plus three dimes which is $.30 makes it $1.55
Answer:
Prime
Step-by-step explanation:
- As there is no common between 5y and 7 except 1 as factor.
- Hence its not factorable
Given that
XY*8 = YYY ⇒⇒⇒ Where X and Y are digits
So, X is equal to one of the digits from 1 to 9
and Y is one of the digits from 1 to 9
This can be solved as following
YYY = 100Y + 10Y + Y = Y(100+10+1) = 111Y
XY*8 = 8 (10X + Y) = 80X + 8Y
∴ 80X + 8Y = 111Y
∴ 80 X = 111Y - 8 Y
∴ 80 X = 103 Y
∴ Y = 80X/103
substitute with X = 1 to 9
X = 1 ⇒⇒⇒ Y = 0.77 ⇒⇒ unacceptable
X = 2 ⇒⇒⇒ Y = 1.55 ⇒⇒ unacceptable
X = 3 ⇒⇒⇒ Y = 2.33 ⇒⇒ unacceptable
X = 4 ⇒⇒⇒ Y = 3.11 ⇒⇒ unacceptable
X = 5 ⇒⇒⇒ Y = 3.88 ⇒⇒ unacceptable
X = 6 ⇒⇒⇒ Y = 4.66 ⇒⇒ unacceptable
X = 7 ⇒⇒⇒ Y = 5.44 ⇒⇒ unacceptable
X = 8 ⇒⇒⇒ Y = 6.21 ⇒⇒ unacceptable
X = 9 ⇒⇒⇒ Y = 6.99 ⇒⇒ unacceptable
So, The is no value of Y to achieve ⇒⇒ XY * 8 = YYY
================================================
I think the problem is as following:
Given that XY8 = YYY ⇒⇒⇒ Where X and Y are digits
So, X is equal to one of the digits from 1 to 9
and Y is one of the digits from 1 to 9
This can be solved as following
YYY = 100Y + 10Y + Y = Y(100+10+1) = 111Y
XY8 = 100X + 10Y + 8
∴ 100X + 10Y + 8 = 111Y
∴ 100x + 8 = 101Y
∴ Y = (100X + 8)/101
substitute with X = 1 to 9
X = 1 ⇒⇒⇒ Y = 1.07 ⇒⇒ unacceptable
X = 2 ⇒⇒⇒ Y = 2.06 ⇒⇒ unacceptable
X = 3 ⇒⇒⇒ Y = 3.05 ⇒⇒ unacceptable
X = 4 ⇒⇒⇒ Y = 4.04 ⇒⇒ unacceptable
X = 5 ⇒⇒⇒ Y = 5.03 ⇒⇒ unacceptable
X = 6 ⇒⇒⇒ Y = 6.02 ⇒⇒ unacceptable
X = 7 ⇒⇒⇒ Y = 7.01 ⇒⇒ unacceptable
X = 8 ⇒⇒⇒ Y = 8 ⇒⇒⇒ integer ⇒⇒ the correct answer
X = 9 ⇒⇒⇒ Y =8.99 ⇒⇒ unacceptable
So, The value of Y = 8