Answer:
The distance to the earth's horizon from point P is 216.2198187 mi, appriximately 216.22 mi
Step-by-step explanation:
This is a right triangle:
Hypotenuse: c=3959 mi + 5.9 mi → c=3964.9 mi
Leg 1: a=x=?
Leg 2: b=3959 mi
Using the Pytagorean theorem:
a^2+b^2=c^2
Replacing the known values:
(x)^2+(3959 mi)^2=(3964.9 mi)^2
Solving for x: Squaring:
x^2+15,673,681 mi^2=15,720,432.01 mi^2
Subtracting 15,673,681 mi^2 both sides of the equation:
x^2+15,673,681 mi^2-15,673,681 mi^2=15,720,432.01 mi^2-15,673,681 mi^2
x^2=46,751.01 mi^2
Square root both sides of the equation:
sqrt(x^2)=sqrt(46,751.01 mi^2)
x=216.2198187 mi
x=216.22 mi