It defines the sequence as a formula<span> in terms of n. ... Sequence: {10, 15, 20, 25, 30, 35, ...}. Find an </span>explicit formula<span>. This example is an arithmetic sequence(the same number, 5, is added to each term to get to the next term).</span>
Answer:
Estimate: $900.00
Step-by-step explanation:
This cannot be A, B, or C, as it won't make sense with the increase of 75$ each 4 years, with 30K down payment,
Answer:
The correct option is;
Substitute x = 0 in the function and solve for f(x)
Step-by-step explanation:
The zeros of a function are the values of x which produces the value of 0 when substituted in the function
It is the point where the curve or line of the function crosses the x-axis
A. Substituting x = 0 will only give the point where the curve or line of the function crosses the y-axis,
Therefore, substituting x = 0 in the function can't be used to find the zero's of a function
B. Plotting a graph of the table of values of the function will indicate the zeros of the function or the point where the function crosses the x-axis
C. The zero product property when applied to the factors of the function equated to zero can be used to find the zeros of a function
d, The quadratic formula can be used to find the zeros of a function when the function is written in the form a·x² + b·x + c = 0
Answer:
-1
Step-by-step explanation:
The expression evaluates to the indeterminate form -∞/∞, so L'Hopital's rule is appropriately applied. We assume this is the common log.
d(log(x))/dx = 1/(x·ln(10))
d(log(cot(x)))/dx = 1/(cot(x)·ln(10)·(-csc²(x)) = -1/(sin(x)·cos(x)·ln(10))
Then the ratio of these derivatives is ...
lim = -sin(x)cos(x)·ln(10)/(x·ln(10)) = -sin(x)cos(x)/x
__
At x=0, this has the indeterminate form 0/0, so L'Hopital's rule can be applied again.
d(-sin(x)cos(x))/dx = -cos(2x)
dx/dx = 1
so the limit is ...
lim = -cos(2x)/1
lim = -1 when evaluated at x=0.
_____
I find it useful to use a graphing calculator to give an estimate of the limit of an indeterminate form.
I believe that the answer would be C. because each triangle that is “broken up” in the hexagon is equilateral meaning that angle 1 and angle 3 would be congruent and equal to 60, and since angle 2 is half the measure of angle 1 it would be 30. Hope this helps!