He raised $736.
One way is to multiply 640 x .15 = 96
Add 96 + 640 = 736
The limit of the given function if
is 64
<h3>Limit of a function</h3>
Given the following limit of a function expressed as;

We are to determine the value of the function
![\frac{1}{4} \lim_{x \to 0} [f(x)]^4](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Bf%28x%29%5D%5E4)
This can also be expressed as
![\frac{1}{4} \lim_{x \to 0} [f(x)]^4\\ = \frac{1}{4}(4)^4 \\=1/4\times 256\\=64](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Bf%28x%29%5D%5E4%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B4%7D%284%29%5E4%20%5C%5C%3D1%2F4%5Ctimes%20256%5C%5C%3D64)
Hence the limit of the given function if
is 64
Learn more on limit of a function here: brainly.com/question/23935467
#SPJ1
Answer:
-4 (5v -3v -6) -9v (use the distributive property)
-20v +12v +24 -9v (combine all like terms)
-17v +24
Answer:
Following are the solution to the given choices:
Step-by-step explanation:
Using chebyshev's theorem
:

In point a)



In point b)

In point c)

In point d)
using standard normal variate

1 2 4 8 16 32 64 128 256 512 1024. each one is 2 times the previous