Answer:
![\displaystyle y = \frac{t^2}{16} + 18](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%20%3D%20%5Cfrac%7Bt%5E2%7D%7B16%7D%20%2B%2018)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
<u>Algebra I</u>
- Functions
- Function Notation
- Coordinates (x, y)
<u>Calculus</u>
Derivatives
Derivative Notation
Antiderivatives - Integrals
Integration Constant C
Integration Rule [Reverse Power Rule]: ![\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7Bx%5En%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bx%5E%7Bn%20%2B%201%7D%7D%7Bn%20%2B%201%7D%20%2B%20C)
Integration Property [Multiplied Constant]: ![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7Bcf%28x%29%7D%20%5C%2C%20dx%20%3D%20c%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
Point (0, 18)
![\displaystyle \frac{dy}{dt} = \frac{1}{8} t](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%7D%7B8%7D%20t)
<u>Step 2: Find General Solution</u>
<em>Use integration</em>
- [Derivative] Rewrite:
![\displaystyle dy = \frac{1}{8} t\ dt](https://tex.z-dn.net/?f=%5Cdisplaystyle%20dy%20%3D%20%5Cfrac%7B1%7D%7B8%7D%20t%5C%20dt)
- [Equality Property] Integrate both sides:
![\displaystyle \int dy = \int {\frac{1}{8} t} \, dt](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20dy%20%3D%20%5Cint%20%7B%5Cfrac%7B1%7D%7B8%7D%20t%7D%20%5C%2C%20dt)
- [Left Integral] Integrate [Integration Rule - Reverse Power Rule]:
![\displaystyle y = \int {\frac{1}{8} t} \, dt](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%20%3D%20%5Cint%20%7B%5Cfrac%7B1%7D%7B8%7D%20t%7D%20%5C%2C%20dt)
- [Right Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle y = \frac{1}{8}\int {t} \, dt](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%20%3D%20%5Cfrac%7B1%7D%7B8%7D%5Cint%20%7Bt%7D%20%5C%2C%20dt)
- [Right Integral] Integrate [Integration Rule - Reverse Power Rule]:
![\displaystyle y = \frac{1}{8}(\frac{t^2}{2}) + C](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%20%3D%20%5Cfrac%7B1%7D%7B8%7D%28%5Cfrac%7Bt%5E2%7D%7B2%7D%29%20%2B%20C)
- Multiply:
![\displaystyle y = \frac{t^2}{16} + C](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%20%3D%20%5Cfrac%7Bt%5E2%7D%7B16%7D%20%2B%20C)
<u>Step 3: Find Particular Solution</u>
- Substitute in point [Function]:
![\displaystyle 18 = \frac{0^2}{16} + C](https://tex.z-dn.net/?f=%5Cdisplaystyle%2018%20%3D%20%5Cfrac%7B0%5E2%7D%7B16%7D%20%2B%20C)
- Simplify:
![\displaystyle 18 = 0 + C](https://tex.z-dn.net/?f=%5Cdisplaystyle%2018%20%3D%200%20%2B%20C)
- Add:
![\displaystyle 18 = C](https://tex.z-dn.net/?f=%5Cdisplaystyle%2018%20%3D%20C)
- Rewrite:
![\displaystyle C = 18](https://tex.z-dn.net/?f=%5Cdisplaystyle%20C%20%3D%2018)
- Substitute in <em>C</em> [Function]:
![\displaystyle y = \frac{t^2}{16} + 18](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%20%3D%20%5Cfrac%7Bt%5E2%7D%7B16%7D%20%2B%2018)
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Integration
Book: College Calculus 10e
X - 4y = 2.....multiply by -3
3x + 2y = 6
-------------
-3x + 12y = -6 (result of multiplying by -3)
3x + 2y = 6
------------add
14y = 0
y = 0
3x + 2y = 6
3x + 2(0) = 6
3x = 6
x = 6/3
x = 2
solution is (2,0).....so the graph that has the two lines intersecting (crossing) at (2,0) is gonna be ur graph
Answer:
m = -3
Step-by-step explanation:
5m + 20 = 8 + 2m +3
5m + 20 = 11 +2m
3m + 20 = 11
3m = -9
m = -3
Answer:
w = -1.266
Step-by-step explanation:
distribute the 5 by everything in the parenthesis and then bring everyhting down then you should have a regular equation to work w