SIDE LENGTH OF TRIANGLE: 2.14 inches
SIDE LENGTH OF HEXAGON: 6 inches
To solve this problem, we know that the shapes have equal sides as it states “equilateral triangle”. A triangle has 3 sides and a hexagon has 6 sides. We are told the perimeters are the same so you can set their perimeters equal to each other to solve for x. You would get this : 3(1.4x + 2) = 6(0.5x +2)
With basic algebra you would get x= 5
Then you substitute that value into the length sides of the triangle and hexagon. For the triangle you would approx get 2.14 inches and for the hexagon 6 inches
Number 1 might be A and number 2 might be B. I'm not sure though.
Answer: 47.5 seconds
Step-by-step explanation:
380=2x+6x
8x=380
x=47.5 s
Hope this helped!
<h2><em>Answer:</em></h2><h2><em>Answer:x = 7+4√3</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√3</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)Multiplying both numerator and denominator by 2 - √3, we get</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)Multiplying both numerator and denominator by 2 - √3, we get1/√x = (2-√3)/(2-√3)(2+√3) = (2-√3)/(2²-√3²) =</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)Multiplying both numerator and denominator by 2 - √3, we get1/√x = (2-√3)/(2-√3)(2+√3) = (2-√3)/(2²-√3²) =1/√x = 2-√3</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)Multiplying both numerator and denominator by 2 - √3, we get1/√x = (2-√3)/(2-√3)(2+√3) = (2-√3)/(2²-√3²) =1/√x = 2-√3Hence √x +1/√x = 2+√3 +2 -√3 = 4</em></h2><h2 />