Consider the line y = 2x + 1, shown at the right. Notice that this slope will be the same if the points (1,3) and (2, 5) are used for the calculations. For straight lines, the rate of change<span> (slope) is constant (always the same). For every one unit that is moved on the x-axis, two units are moved on the y-axis.hope this helped. </span>
Question Two is D. $14.80
Answer: Option C) Raj forgot the negative when substituting -15+9x for y.
Solution:
(1) 9x-y=15
(2) 2x+8y=28
Isolating y in the first equation. Subtracting 9x both sides of the equation:
(1) 9x-y-9x=15-9x
Subtracting:
(1) -y=15-9x
Multiplying both sides of the equation by -1:
(1) (-1)(-y)=(-1)(15-9x)
(1) y=-15+9x
Then Raj found the value of y. It's not option D.
Substitutng y by -15+9x in the second equation:
(2) 2x+8(-15+9x)=28
Then option C) is the answer: Raj forgot the negative when substituting -15+9x for y.
Eliminating the parentheses applying the distributive property in the multiplication:
(2) 2x-120+72x=28
Adding similar terms:
(2) 74x-120=28
Solving for x. Adding 120 both sides of the equation:
(2) 74x-120+120=28+120
Adding:
(2) 74x=148
Dividing both sides of the equation by 74:
(2) 74x/74=148/74
Dividing:
(2) x=2
Solving for y: Replacing x by 2 in the first equation:
(1) y=-15+9x
(1) y=-15+9(2)
Multiplying:
(1) y=-15+18
Subtracting:
(1) y=3