Answer:
(-6, -3)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
- Solving systems of equations by graphing
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y - 15 = 3x
-2x + 5y = -3
<u>Step 2: Rewrite Systems</u>
y - 15 = 3x
- Add 15 to both sides: y = 3x + 15
<u>Step 3: Redefine Systems</u>
y = 3x + 15
-2x + 5y = -3
<u>Step 4: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: -2x + 5(3x + 15) = -3
- Distribute 5: -2x + 15x + 75 = -3
- Combine like terms: 13x + 75 = -3
- Isolate <em>x</em> term: 13x = -78
- Isolate <em>x</em>: x = -6
<u>Step 5: Solve for </u><em><u>y</u></em>
- Define equation: y - 15 = 3x
- Substitute in <em>x</em>: y - 15 = 3(-6)
- Multiply: y - 15 = -18
- Isolate <em>y</em>: y = -3
<u>Step 6: Graph Systems</u>
<em>Check the solution set.</em>