Answer:
x10
Step-by-step explanation:
-0.56x10 is -5.6 and so on -5.6x10 = -56
Answer:
About the x axis
![V = 4\pi[ \frac{x^5}{5}] \Big|_0^2 =4\pi *\frac{32}{5}= \frac{128 \pi}{5}](https://tex.z-dn.net/?f=%20V%20%3D%204%5Cpi%5B%20%5Cfrac%7Bx%5E5%7D%7B5%7D%5D%20%5CBig%7C_0%5E2%20%3D4%5Cpi%20%2A%5Cfrac%7B32%7D%7B5%7D%3D%20%5Cfrac%7B128%20%5Cpi%7D%7B5%7D)
About the y axis
![V = \pi [4y -y^2 +\frac{y^3}{12}] \Big|_0^8 =\pi *\frac{32}{3}= \frac{32 \pi}{3}](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cpi%20%5B4y%20-y%5E2%20%2B%5Cfrac%7By%5E3%7D%7B12%7D%5D%20%5CBig%7C_0%5E8%20%3D%5Cpi%20%2A%5Cfrac%7B32%7D%7B3%7D%3D%20%5Cfrac%7B32%20%5Cpi%7D%7B3%7D)
About the line y=8
![V = \pi [64x -\frac{32}{3}x^3 +\frac{4}{5}x^5] \Big|_0^2 =\pi *(128-\frac{256}{3} +\frac{128}{5})= \frac{1024 \pi}{5}](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cpi%20%5B64x%20-%5Cfrac%7B32%7D%7B3%7Dx%5E3%20%2B%5Cfrac%7B4%7D%7B5%7Dx%5E5%5D%20%5CBig%7C_0%5E2%20%3D%5Cpi%20%2A%28128-%5Cfrac%7B256%7D%7B3%7D%20%2B%5Cfrac%7B128%7D%7B5%7D%29%3D%20%5Cfrac%7B1024%20%5Cpi%7D%7B5%7D)
About the line x=2
![V = \frac{\pi}{2} [\frac{y^2}{2}] \Big|_0^8 =\frac{\pi}{4} *(64)= 16\pi](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%5B%5Cfrac%7By%5E2%7D%7B2%7D%5D%20%5CBig%7C_0%5E8%20%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%20%2A%2864%29%3D%2016%5Cpi)
Step-by-step explanation:
For this case we have the following functions:

About the x axis
Our zone of interest is on the figure attached, we see that the limit son x are from 0 to 2 and on y from 0 to 8.
We can find the area like this:

And we can find the volume with this formula:


![V = 4\pi [\frac{x^5}{5}] \Big|_0^2 =4\pi *\frac{32}{5}= \frac{128 \pi}{5}](https://tex.z-dn.net/?f=%20V%20%3D%204%5Cpi%20%5B%5Cfrac%7Bx%5E5%7D%7B5%7D%5D%20%5CBig%7C_0%5E2%20%3D4%5Cpi%20%2A%5Cfrac%7B32%7D%7B5%7D%3D%20%5Cfrac%7B128%20%5Cpi%7D%7B5%7D)
About the y axis
For this case we need to find the function in terms of x like this:

but on this case we are just interested on the + part
as we can see on the second figure attached.
We can find the area like this:

And we can find the volume with this formula:


![V = \pi [4y -y^2 +\frac{y^3}{12}] \Big|_0^8 =\pi *\frac{32}{3}= \frac{32 \pi}{3}](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cpi%20%5B4y%20-y%5E2%20%2B%5Cfrac%7By%5E3%7D%7B12%7D%5D%20%5CBig%7C_0%5E8%20%3D%5Cpi%20%2A%5Cfrac%7B32%7D%7B3%7D%3D%20%5Cfrac%7B32%20%5Cpi%7D%7B3%7D)
About the line y=8
The figure 3 attached show the radius. We can find the area like this:

And we can find the volume with this formula:


![V = \pi [64x -\frac{32}{3}x^3 +\frac{4}{5}x^5] \Big|_0^2 =\pi *(128-\frac{256}{3} +\frac{128}{5})= \frac{1024 \pi}{5}](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cpi%20%5B64x%20-%5Cfrac%7B32%7D%7B3%7Dx%5E3%20%2B%5Cfrac%7B4%7D%7B5%7Dx%5E5%5D%20%5CBig%7C_0%5E2%20%3D%5Cpi%20%2A%28128-%5Cfrac%7B256%7D%7B3%7D%20%2B%5Cfrac%7B128%7D%7B5%7D%29%3D%20%5Cfrac%7B1024%20%5Cpi%7D%7B5%7D)
About the line x=2
The figure 4 attached show the radius. We can find the area like this:

And we can find the volume with this formula:


![V = \frac{\pi}{2} [\frac{y^2}{2}] \Big|_0^8 =\frac{\pi}{4} *(64)= 16\pi](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%5B%5Cfrac%7By%5E2%7D%7B2%7D%5D%20%5CBig%7C_0%5E8%20%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%20%2A%2864%29%3D%2016%5Cpi)
Answer:
whenever you're multiplying terms that have exponents you multiply the coefficients and add their exponents:
Step-by-step explanation:
I think the answer to your first question should be:
30a²b - 30ab²
Your second answer is good
whenever you're multiplying terms that have exponents you multiply the coefficients and add their exponents:
for example, 6a²b³c x 2abc = 6(2)(a²)(a)(b³)(b)(c)(c)
= 12a³b⁴c²
The triangle will still be similar to the original triangle.
Those transformations altered the position and scale of the triangle, but the angle measures are still the same.
The answer is 7!
The number In front of the variable is always the coefficient.