H1 (t) = 196 - 16 t-squared. / / / H2 (t) = 271-16t-squared. / / / In each function, 't' is the number of seconds after that ball is dropped. / / / Each function is only true until the first time that H=0, that is, until the first bounce. Each function becomes very complicated after that, and we would need more information in order to write it.
Answer:
One Solution
Step-by-step explanation:
Trust me
Answer:
1.SAS, ASA,
2. Not congruent
3.C
4. If you could screenshot the whole page I can give tell you what it is.
Answer:
Recall that a relation is an <em>equivalence relation</em> if and only if is symmetric, reflexive and transitive. In order to simplify the notation we will use A↔B when A is in relation with B.
<em>Reflexive: </em>We need to prove that A↔A. Let us write J for the identity matrix and recall that J is invertible. Notice that
. Thus, A↔A.
<em>Symmetric</em>: We need to prove that A↔B implies B↔A. As A↔B there exists an invertible matrix P such that
. In this equality we can perform a right multiplication by
and obtain
. Then, in the obtained equality we perform a left multiplication by P and get
. If we write
and
we have
. Thus, B↔A.
<em>Transitive</em>: We need to prove that A↔B and B↔C implies A↔C. From the fact A↔B we have
and from B↔C we have
. Now, if we substitute the last equality into the first one we get
.
Recall that if P and Q are invertible, then QP is invertible and
. So, if we denote R=QP we obtained that
. Hence, A↔C.
Therefore, the relation is an <em>equivalence relation</em>.