:V
the action or process of fertilizing an egg, female animal, or plant, involving the fusion of male and female gametes to form a zygote.
Hope this helps
Answer: Thermal decomposition
Explanation:
Decomposition is a type of chemical reaction in which one reactant forms two or more than two products.
Decomposition reactions require breaking of bonds which require energy and thus all of the decomposition reactions are endothermic reactions. They require energy in the form of heat, electricity or sunlight and thus called as thermal, electrolytic and photolytic decomposition respectively.
The decomposition reaction for calcium carbonate breaks down into calcium oxide and liberates carbon dioxide is :

<u>Answer:</u> The Gibbs free energy of the given reaction is 
<u>Explanation:</u>
The equation used to calculate Gibbs free energy change is of a reaction is:
![\Delta G^o_{rxn}=\sum [n\times \Delta G^o_f_{(product)}]-\sum [n\times \Delta G^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the Gibbs free energy change of the above reaction is:
![\Delta G^o_{rxn}=[(2\times \Delta G^o_f_{(CO_2(g))})+(4\times \Delta G^o_f_{(H_2O(g))})]-[(2\times \Delta G^o_f_{(CH_3OH(g))})+(3\times \Delta G^o_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28CH_3OH%28g%29%29%7D%29%2B%283%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28O_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta G^o_{rxn}=[(2\times (-394.36))+(4\times (-228.57))]-[(2\times (-161.96))+(3\times (0))]\\\\\Delta G^o_{rxn}=-1379.08kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-394.36%29%29%2B%284%5Ctimes%20%28-228.57%29%29%5D-%5B%282%5Ctimes%20%28-161.96%29%29%2B%283%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20G%5Eo_%7Brxn%7D%3D-1379.08kJ%2Fmol)
The equation used to Gibbs free energy of the reaction follows:

where,
= free energy of the reaction
= standard Gibbs free energy = -1379.08 kJ/mol = -1379080 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/K mol
T = Temperature = ![25^oC=[273+25]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5DK%3D298K)
= Ratio of concentration of products and reactants = 

Putting values in above expression, we get:

Hence, the Gibbs free energy of the given reaction is 