Square root of 154m^2 = 12.5~
So adding 1.5 to 12.5 and subtracting 1.5 to 12.5 gives us 11 and 14
Your dimensions are 11x14
Brainliest?
Thanks!
Answer:
Option: A is the correct answer.
The number of weeds is decreasing by a multiplicative rate.
Step-by-step explanation:
Clear;y from the scatter plot we could observe that with the increasing value of one variable the other variable is decreasing.
Hence, The number of weeds is decreasing.
Also as we could see that the line of best fit is a curve and not a line Hence, the number of weeds are not decreasing by a additive rate ( since the rate or a slope of a line is constant) it is decreasing by a multiplicative rate.
<em>Based on the graph of a regression model:</em>
<em>Option: A is correct.</em>
Answer:
Step-by-step explanation:
Hello!
X: number of absences per tutorial per student over the past 5 years(percentage)
X≈N(μ;σ²)
You have to construct a 90% to estimate the population mean of the percentage of absences per tutorial of the students over the past 5 years.
The formula for the CI is:
X[bar] ±
* 
⇒ The population standard deviation is unknown and since the distribution is approximate, I'll use the estimation of the standard deviation in place of the population parameter.
Number of Absences 13.9 16.4 12.3 13.2 8.4 4.4 10.3 8.8 4.8 10.9 15.9 9.7 4.5 11.5 5.7 10.8 9.7 8.2 10.3 12.2 10.6 16.2 15.2 1.7 11.7 11.9 10.0 12.4
X[bar]= 10.41
S= 3.71

[10.41±1.645*
]
[9.26; 11.56]
Using a confidence level of 90% you'd expect that the interval [9.26; 11.56]% contains the value of the population mean of the percentage of absences per tutorial of the students over the past 5 years.
I hope this helps!
I think your answer is C correct me if I’m wrong
Answer:
Step-by-step explanation:
In dilation, the image and the original are similar, in that they are the same shape but not necessarily the same size. They are not congruent because that requires them to be the same shape and the same size, which they are not (scale factor is 2)
vertices of ABC are A(-2,2), B(-2,3), and C(1,2)
If we multiply by 2 from original to image,
then from image to original we divide by 2