1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dominik [7]
3 years ago
5

Expand and simplity 4(2x - 1)3(2x 5) Plzz help me

Mathematics
1 answer:
k0ka [10]3 years ago
7 0

Answer:

240^2 - 120x

Step-by-step explanation:

4(2x - 1) x 3 x (2x 5)

4(2x - 1) x 3 x (10x)

4(2x - 1) x 3 x 10x

120x x (2x-1)

240^2 - 120x

You might be interested in
BRAINLIEST AND POINTS!! EASY!!!
SVETLANKA909090 [29]

Hey there!

The mean of the numbers is the <u>average</u>. To find the mean we will simply add all the numbers together, and divide them by the amount of numbers there are. Easy, peesy, lemon squeezy. Lets get started.

7 + 10 + 22 + 10 + 12 + 10 + 12 = 83

Now that we have added those altogether, we can divide them by the amount of numbers there are. The amount of numbers there are comes to a total of 7. Therefore...

83 divided by 7 = 11.857

Answer Choice B. 11.9 is your correct answer.

3 0
3 years ago
Read 2 more answers
Let measure angle A equal 40. If angle B complement of angle A, and angle C is a supplemlement of angle B find these measures
uranmaximum [27]
Two angles are complementary when they add up to 90 degrees<span> 
m</span>∠B = 90° - m∠A = 90° - 40° = 50°

Two angles are supplementary when they add up to 180 degrees 
m∠C = 180° - m∠B = 180° - 50° = 130°
8 0
3 years ago
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
A swimming pool has a capacity of 2,500 gallons of water. The output of a hose is 25 gallon per minute. How much time would it t
g100num [7]

Answer:

  • 100 minutes

Solution:

<u>We know that:</u>

  • Capacity = 2,500 gallons
  • Hose = 25 gallons/minute

Solution:

  • 25 gallons = 1 minute
  • => 25x gallons = x minutes = 2500 gallons
  • => 25x = 2500
  • => x = 100 minutes

Hence, it will take 100 minutes to fill the pool.

4 0
3 years ago
Find the empirical formula of the compound containing 2.4 gram of carbon, 6.4 gram of oxygen and 0.2 gram of hydrogen ​
Usimov [2.4K]

Answer:

Empirical formula= COOH

Step-by-step explanation:

Molecular mass of the elements

Carbon= 12

Oxygen= 16

Hydrogen= 1

We divide the elements each with their molecular formula

Carbon= 2.4/12

Carbon= 0.2

Oxygen= 6.4/16

Oxygen= 0.4

Hydrogen= 0.2/1

Hydrogen= 0.2

Now we divide with the smallest result which is 0.2

Carbon= 0.2/0.2

Carbon = 1

Oxygen= 0.4/0.2

Oxygen= 2

Hydrogen= 0.2/0.2

Hydrogen= 1

So we have

Carbon 1, oxygen 2, hydrogen 1

Empirical formula= COOH

4 0
3 years ago
Other questions:
  • In a period of 2 and one-fourth hours, 5 and one-half gallons of water leaked from a water tank. How much water did the tank los
    14·1 answer
  • Help!!!!!!!!!!!!!!!!
    6·1 answer
  • PLEASE HELP FAST In the diagram below, Xy and yz are tangent to o. What is the measure of<br> Xwz?
    6·2 answers
  • a ceramic bowl weighs 340 grams when empty. it is then filled with sugar. one tablespoon of sugar weighs 12.5 grams. write an eq
    11·1 answer
  • On a sunny day, a 6-foot red kangaroo casts a shadow that is 7 feet long. the shadow of a nearby eucalyptus tree is 42 feet long
    15·1 answer
  • Which of the following is the exact value of cot 60°?
    15·1 answer
  • What is 3.47 divided by 8
    12·2 answers
  • Please answer. Thanks!​
    13·1 answer
  • Help???????????????? Giving brainiest to right answer
    13·1 answer
  • Mark hopes to one day earn 10000 dollars predict how many clients mark would need to train
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!