Answer:
For a point defined bt a radius R, and an angle θ measured from the positive x-axis (like the one in the image)
The transformation to rectangular coordinates is written as:
x = R*cos(θ)
y = R*sin(θ)
Here we are in the unit circle, so we have a radius equal to 1, so R = 1.
Then the exact coordinates of the point are:
(cos(θ), sin(θ))
2) We want to mark a point Q in the unit circle sch that the tangent has a value of 0.
Remember that:
tan(x) = sin(x)/cos(x)
So if sin(x) = 0, then:
tan(x) = sin(x)/cos(x) = 0/cos(x) = 0
So tan(x) is 0 in the points such that the sine function is zero.
These values are:
sin(0°) = 0
sin(180°) = 0
Then the two possible points where the tangent is zero are the ones drawn in the image below.
Answer:
I think the answer is12h?
Make her feel important and good about herself. Compliment her, never put her down, and always encourage her to reach for the things she wants. Let her know when you see her do something well, even if it's just something small like helping someone else.