1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nesterboy [21]
3 years ago
8

A hawker gains the selling price of 4 ball-point pens on selling 1 dozen pens. What is his gain percentage?​

Mathematics
1 answer:
BabaBlast [244]3 years ago
8 0
<h3>☝︎☝︎☝︎☝︎</h3><h2>\large{\underbrace{\underline{\fcolorbox{White}{aqua}{\bf{ANSWER♥︎}}}}}</h2>

<h3><u>S</u><u>e</u><u>e</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>a</u><u>t</u><u>t</u><u>a</u><u>c</u><u>h</u><u>m</u><u>e</u><u>n</u><u>t</u><u>☝︎</u><u>☝︎</u><u>☝︎</u><u>☝︎</u><u>☝︎</u></h3>

You might be interested in
Find the length of side x in simplest radical form with a rational a<br> denominator.
Drupady [299]

Step-by-step explanation:

{x}^{2}  =  {7}^{2}   +  {7}^{2}  \\  {x}^{2}  = 98 \\  x =  \sqrt{98}  = 7 \sqrt{2}

5 0
3 years ago
Compute the sum:
Nady [450]
You could use perturbation method to calculate this sum. Let's start from:

S_n=\sum\limits_{k=0}^nk!\\\\\\\(1)\qquad\boxed{S_{n+1}=S_n+(n+1)!}

On the other hand, we have:

S_{n+1}=\sum\limits_{k=0}^{n+1}k!=0!+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=0}^{n}(k+1)!=\\\\\\=1+\sum\limits_{k=0}^{n}k!(k+1)=1+\sum\limits_{k=0}^{n}(k\cdot k!+k!)=1+\sum\limits_{k=0}^{n}k\cdot k!+\sum\limits_{k=0}^{n}k!\\\\\\(2)\qquad \boxed{S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n}

So from (1) and (2) we have:

\begin{cases}S_{n+1}=S_n+(n+1)!\\\\S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\end{cases}\\\\\\&#10;S_n+(n+1)!=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\\\\\\&#10;(\star)\qquad\boxed{\sum\limits_{k=0}^{n}k\cdot k!=(n+1)!-1}

Now, let's try to calculate sum \sum\limits_{k=0}^{n}k\cdot k!, but this time we use perturbation method.

S_n=\sum\limits_{k=0}^nk\cdot k!\\\\\\&#10;\boxed{S_{n+1}=S_n+(n+1)(n+1)!}\\\\\\&#10;

but:

S_{n+1}=\sum\limits_{k=0}^{n+1}k\cdot k!=0\cdot0!+\sum\limits_{k=1}^{n+1}k\cdot k!=0+\sum\limits_{k=0}^{n}(k+1)(k+1)!=\\\\\\=&#10;\sum\limits_{k=0}^{n}(k+1)(k+1)k!=\sum\limits_{k=0}^{n}(k^2+2k+1)k!=\\\\\\=&#10;\sum\limits_{k=0}^{n}\left[(k^2+1)k!+2k\cdot k!\right]=\sum\limits_{k=0}^{n}(k^2+1)k!+\sum\limits_{k=0}^n2k\cdot k!=\\\\\\=\sum\limits_{k=0}^{n}(k^2+1)k!+2\sum\limits_{k=0}^nk\cdot k!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\&#10;\boxed{S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n}

When we join both equation there will be:

\begin{cases}S_{n+1}=S_n+(n+1)(n+1)!\\\\S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\end{cases}\\\\\\&#10;S_n+(n+1)(n+1)!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\\\&#10;\sum\limits_{k=0}^{n}(k^2+1)k!=S_n-2S_n+(n+1)(n+1)!=(n+1)(n+1)!-S_n=\\\\\\=&#10;(n+1)(n+1)!-\sum\limits_{k=0}^nk\cdot k!\stackrel{(\star)}{=}(n+1)(n+1)!-[(n+1)!-1]=\\\\\\=(n+1)(n+1)!-(n+1)!+1=(n+1)!\cdot[n+1-1]+1=\\\\\\=&#10;n(n+1)!+1

So the answer is:

\boxed{\sum\limits_{k=0}^{n}(1+k^2)k!=n(n+1)!+1}

Sorry for my bad english, but i hope it won't be a big problem :)
8 0
4 years ago
Please help Lia brought 21 shirts and plants. Her total was $357. Pants cost $25 each, and shirts cost $14.50 each. How many of
Mumz [18]

Answer: Chnager your profile pic

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
How to find the surface area of a hexagon?
shutvik [7]

Answer:

adding all the areas on the surface: the areas of the base, top, and lateral surfaces (sides) of the object.

Step-by-step explanation:

6 0
2 years ago
F (x) = 2x^2 - 4x + 1
Kobotan [32]

Answer:

<h2><u>tinanong ko rin po yang tanong nyo at ito po ang sagot nila</u></h2>

3 0
3 years ago
Other questions:
  • Can someone help with these trigonometry problems
    15·1 answer
  • Lourenço analyzed prices of laptop
    14·1 answer
  • If (8z − 9)(8z + 9) = az2 − b, what is the value of a? (5 points)
    5·1 answer
  • What is the equation of a line through the points (0, 9) and (3, 0)?
    12·2 answers
  • What is five plus three
    8·2 answers
  • Which is the value of x?
    11·1 answer
  • Please help me on this question I really need help. :,)
    11·1 answer
  • I WILL GIVE BRAINLIEST!! 20 POINTS!! HELP!!
    5·1 answer
  • The area of the total surface area of a square base pramid is 576cm and slant height is 10 cm find the volume of the pramid
    13·1 answer
  • I don't know how to solve this at all, i just need some help on how to figure it out. Thanks!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!