We have that
<span>tan(theta)sin(theta)+cos(theta)=sec(theta)
</span><span>[sin(theta)/cos(theta)] sin(theta)+cos(theta)=sec(theta)
</span>[sin²<span>(theta)/cos(theta)]+cos(theta)=sec(theta)
</span><span>the next step in this proof
is </span>write cos(theta)=cos²<span>(theta)/cos(theta) to find a common denominator
so
</span>[sin²(theta)/cos(theta)]+[cos²(theta)/cos(theta)]=sec(theta)<span>
</span>{[sin²(theta)+cos²(theta)]/cos(theta)}=sec(theta)<span>
remember that 
</span>sin²(theta)+cos²(theta)=1
{[sin²(theta)+cos²(theta)]/cos(theta)}------------> 1/cos(theta)
and 
1/cos(theta)=sec(theta)-------------> is ok
the answer is the option <span>B.) 
He should write cos(theta)=cos^2(theta)/cos(theta) to find a common denominator.</span>
        
                    
             
        
        
        
14. 2x-1 = 0, x+7=0
x = 1/2, x = -7
15. x^2 + 3x - 10 = 0
(x + 5)(x - 2) = 0 
x = -5, x = 2
16. x^2 - 25 = 0
(x-5)(x+5)
x = 5, x  = -5
        
             
        
        
        
Answer:
One angle is 46° and the other angle is 44°
Step-by-step explanation:
Complementary angle means the angles add up to 90 so:
90 - 44 = 46