Answer:
Length of base DE = 24 units
Step-by-step explanation:
Given:
In given triangle, right angle at D
SO,
Perpendicular of given triangle = 32 unit
Hypotenuse of given triangle = 40 unit
Find:
Length of base DE
Computation:
Using Pythagoras theorem
Base = √Hypotenuse² - Perpendicular²
Length of base DE = √Hypotenuse of given triangle² - Perpendicular of given triangle²
Length of base DE = √40² - 32²
Length of base DE = √1,600 - 1,024
Length of base DE = √576
Length of base DE = 24 units
1. A
2. A
3. 144 in^2
4. 128 cm^2
5. 169 cm^2
Answer:
<h3>
1) 7x - 5
</h3><h3>
2) 9y - 18
</h3><h3>
3) 0.5n + 4n
</h3><h3>
4) 2(w³+23)</h3><h3>
Step-by-step explanation:</h3>
1)
The product of seven and a number x: 7·x = 7x
<u>Five less than the product of seven and a number x:</u>
<h3>
7x - 5
</h3>
2)
nine times a number y: 9·y = 9y
<u>The difference of nine times a number y and eighteen:</u>
<h3>
9y - 18
</h3>
3)
half a number n: 0.5n
four times the number: 4·n = 4n
<u>Half a number n increased by four times the number:</u>
<h3>
0.5n + 4n
</h3>
4)
a number w cubed: w³
the sum of a number w cubed and twenty-three: w³+23
<u>Twice the sum of a number w cubed and twenty-three:</u>
<h3>2(
w³+23)</h3>
Answer:
138 students
Step-by-step explanation:
207/9 = 23
23*6=138