Answer:
The expression to compute the amount in the investment account after 14 years is: <em>FV</em> = [5000 ×(1.10)¹⁴] + [3000 ×(1.10)⁸].
Step-by-step explanation:
The formula to compute the future value is:
![FV=PV[1+\frac{r}{100}]^{n}](https://tex.z-dn.net/?f=FV%3DPV%5B1%2B%5Cfrac%7Br%7D%7B100%7D%5D%5E%7Bn%7D)
PV = Present value
r = interest rate
n = number of periods.
It is provided that $5,000 were deposited now and $3,000 deposited after 6 years at 10% compound interest. The amount of time the money is invested for is 14 years.
The expression to compute the amount in the investment account after 14 years is,
![FV=5000[1+\frac{10}{100}]^{14}+3000[1+\frac{10}{100}]^{14-6}\\FV=5000[1+0.10]^{14}+3000[1+0.10]^{8}](https://tex.z-dn.net/?f=FV%3D5000%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%5E%7B14%7D%2B3000%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%5E%7B14-6%7D%5C%5CFV%3D5000%5B1%2B0.10%5D%5E%7B14%7D%2B3000%5B1%2B0.10%5D%5E%7B8%7D)
The future value is:
![FV=5000[1+0.10]^{14}+3000[1+0.10]^{8}\\=18987.50+6430.77\\=25418.27](https://tex.z-dn.net/?f=FV%3D5000%5B1%2B0.10%5D%5E%7B14%7D%2B3000%5B1%2B0.10%5D%5E%7B8%7D%5C%5C%3D18987.50%2B6430.77%5C%5C%3D25418.27)
Thus, the expression to compute the amount in the investment account after 14 years is: <em>FV</em> = [5000 ×(1.10)¹⁴] + [3000 ×(1.10)⁸].
A 1:12 is the answer for this question
Using the law of cosines:
The grocery store to the school:
Distance = √(7^2 + 10^2 - 2*7*10*cos(100)
Distance = 13.16 miles
The movie store to the school:
Distance = √(7^2 + 10^2 - 2*7*10*cos(120)
Distance = 14.80 miles
The friend is further away.
Answer:
A , B, and D
Step-by-step explanation:
you find the unit prices by dividing the cost per pound
a bc it sells them at $1.52 per pound
b bc it sells them at $1.49 per pound
NOT c because it sells them at $3.14 per pound
D because it sells them at $1.88 per pound
Answer:
Step-by-step explanation:
The question says,
A roulette wheel has 38 slots, of which 18 are black, 18 are red,and 2 are green. When the wheel is spun, the ball is equally likely to come to rest in any of the slots. One of the simplest wagers chooses red or black. A bet of $1 on red returns $2 if the ball lands in a red slot. Otherwise, the player loses his dollar. When gamblers bet on red or black, the two green slots belong to the house. Because the probability of winning $2 is 18/38, the mean payoff from a $1 bet is twice 18/38, or 94.7 cents. Explain what the law of large numbers tells us about what will happen if a gambler makes very many betson red.
The law of large numbers tells us that as the gambler makes many bets, they will have an average payoff of which is equivalent to 0.947.
Therefore, if the gambler makes n bets of $1, and as the n grows/increase large, they will have only $0.947*n out of the original $n.
That is as n increases the gamblers will get $0.947 in n places
More generally, as the gambler makes a large number of bets on red, they will lose money.