1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paladinen [302]
3 years ago
8

Find the derivative: y={ (3x+1)cos(2x) } / e^2x​

Mathematics
1 answer:
DochEvi [55]3 years ago
6 0

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Cos x = sin 34°<br> What is the value of x?<br> Enter your answer in the box.
vredina [299]

\bf \textit{Cofunction Identities} \\\\ sin\left(90^o-\theta\right)=cos(\theta) \qquad cos\left(90^o-\theta\right)=sin(\theta) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ cos(x)=\stackrel{90-56}{sin(\stackrel{\downarrow }{34^o})}\implies cos(\stackrel{\downarrow }{x})=sin(90^o-\stackrel{\downarrow }{56^o})\implies cos(56^o)

3 0
3 years ago
Read 2 more answers
An investment account earns 4% per year compounded annually. If the initial investment was $4,000.00, how much is in the account
Alisiya [41]
The account is $4,480 after 3 years with a 4% investment
3 0
3 years ago
What is the approximate solution to this equation?
Citrus2011 [14]
The answer is B because 5^3 is 125 so the approximate answer is 124.75
6 0
3 years ago
Read 2 more answers
Suppose you pick and replace marbles from a bag, one after another. If the bag contains 3 red marbles, 3 white marbles, and 6 bl
alexandr402 [8]

Answer:

I think you forgot part of the question

Step-by-step explanation:

8 0
3 years ago
Free points, will give brainllest too
kow [346]

Answer: potato bread the new banana bread!

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • yesterday Stephanie spent $38.72 on new shoes and $23.19 on computer software when she was finished she had $38.18 how much mone
    9·1 answer
  • The International Average Salary Income Database provides a comparison of average salaries for various professions. The data are
    11·1 answer
  • Lengths in circles!<br><br> Please get it right
    9·1 answer
  • ⭐️ help would be appreciated
    10·1 answer
  • Please help me on this
    6·1 answer
  • Someone can help me with this please​
    8·1 answer
  • There are 6 people in edema family.Beach person drinks2\5 of a gallon of milk each week .How many gallons of milk does Den's fam
    12·1 answer
  • The cost of 4 kg of kale and 1.5 kg of beetroot is £12.20.
    7·1 answer
  • Please help me answer this with the correct answer :)
    15·1 answer
  • Help me i need it to pass
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!