1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paladinen [302]
3 years ago
8

Find the derivative: y={ (3x+1)cos(2x) } / e^2x​

Mathematics
1 answer:
DochEvi [55]3 years ago
6 0

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Answers to this question <br><br>8<br>2.5<br>12<br>3​
ladessa [460]

Answer:

3 = ?

Step-by-step explanation:

The triangles are similar, so we  can use ratios

15           12 -2

------   = --------------

15+?          12

15           10

------   = --------------

15+?          12

Using cross products

15 * 12 = 10 ( 15+?)

180 = 10 ( 15+?)

Divide each side by 10

18 = 15+?

Subtract 15 from each side

18-15 = 15+?-15

3 = ?

5 0
3 years ago
Please help asap (:
Korolek [52]
For this case we first define the variable:
 x = number of terms.
 The equation that models the problem is:
 f (x) = 3.4 - 0.6x
 We have then that the first four terms are:
 x = 1
 f (1) = 3.4 - 0.6 (1) = 3.4 - 0.6 = 2.8
 x = 2
 f (2) = 3.4 - 0.6 (2) = 3.4 - 1.2 = 2.2
 x = 3
 f (3) = 3.4 - 0.6 (3) = 3.4 - 1.8 = 1.6
 x = 4
 f (4) = 3.4 - 0.6 (4) = 3.4 - 2.4 = 1
 Answer:
 
The rule for the sequence is:
 
f (x) = 3.4 - 0.6x
 option 1
7 0
3 years ago
Read 2 more answers
The number 312 lies between the perfect cubes
dusya [7]

Answer:

The number 312 lies between the perfect cubes 216 and 343.

So the cube root of 312 lies between the number 6 and 7.

This means that the cube root of 312 is an irrational number because it is not a perfect cube root.

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Un auto viaja con una velocidad promedio de 84 kilómetros por hora. ¿En cuánto tiempo viaja 462 kilómetros?
timama [110]

The car takes the time 5.5 hours i.e.5 hours and 30 minutes to travel 462 kilometres when the car travels at average speed of 84 kilometres per hour

Given the average speed of the car is 84 kilometres per hour and the distance to be travelled is 462 kilometres and asked to find the time taken for the journey of 462 kilometres

To calculate the time taken for the journey we use the below-mentioned formula

speed=\frac{distance}{Time taken}

(speed)×(Time taken)=distance

Time taken=\frac{distance}{speed}

Time taken=\frac{462 kilometres}{84KMPH}

Time taken=5.5 hours i.e.5 hours and 30 minutes

As a result, the time spent on the car journey is 5.5 hours

Hence, It takes the time 5hours and 5 minutes to travel 462 kilometres

Learn more about time here:

brainly.com/question/28050940

#SPJ9

5 0
2 years ago
Gerald bought 3 shirts for 8.40 each, 2 shirts for 12.89 each, and one shirt for 18.90. What was the average cost of the shirts?
Vanyuwa [196]
So first, you add all the numbers together

8.40*3=25.20
12.89*2=25.78
18.90*1=18.90
____________
$69.88

Divide the number of shirts: 6 by the total amount


69.88
_____ = $11.64666= $11.65 is your answer!
6
8 0
3 years ago
Read 2 more answers
Other questions:
  • The capacity of a beaker is 150ml,how many beakers can be filled from a 4L Container ?
    12·1 answer
  • Express 80 as a product of prime factors using index notation
    5·1 answer
  • Drove eight miles due east and then six miles due north how far troy from his starting point
    13·1 answer
  • I’ll mark brainly answer correct
    12·2 answers
  • If you can only use 3 of these numbers once to find a sum of 30 without subtracting or adding additional numbers, what three num
    6·2 answers
  • Find the quotient of 68.0052 and 12. round the answer to the nearest hundred
    8·1 answer
  • A number is divided by 3. Then, 5 is added to the quotient, and the result is 8. What is the number?
    14·1 answer
  • What’s is 1.3written as a decimal?
    11·2 answers
  • iIsabelle is mixing red paint with blue paint to make purple paint.she ads 3/10 of a fluid ounce of red to 11/16 fluid ounces of
    14·1 answer
  • Plss help with mathh &gt;,
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!