1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paladinen [302]
3 years ago
8

Find the derivative: y={ (3x+1)cos(2x) } / e^2x​

Mathematics
1 answer:
DochEvi [55]3 years ago
6 0

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Derek needs 2 gallons of water to mix a sports drink, but he only has 1 measuring cup. He knows there are 4 cups in 1 quart, and
blagie [28]

Answer:

Where are the drop down menus ?

Step-by-step explanation:

4 0
3 years ago
Solve for x
Tems11 [23]

Answer:

---------

Step-by-step explanation:

x-3= -9

x= -9/ 3

x= -3

( -3x)-5 =16

-3x = 16+5

×= 21/-3

x = -7

8 0
2 years ago
Consider the expression below
brilliants [131]
This one is my real answer 5{10+3]=40 The other one you can use for extra this one 5{10+25]=35

4 0
3 years ago
Write the equation 2y - 4x = 5 in the form y = mx + b.
notka56 [123]
Yea the answer is Y=2x+ 5/2
4 0
3 years ago
Half an hour times 5
BartSMP [9]
2 hours and 30 minutes.
4 0
3 years ago
Other questions:
  • a basketball court is a rectangle with a perimeter of 1040 feet. The length is 200 feet more than the width. What is the width a
    14·2 answers
  • one of the cats in the neighborhood had six kittens all about the same size. If each of the new kittens weighed about5 1/2 ounce
    13·2 answers
  • Stefanie is painting her bedroom. She can paint 12 1/3 square feet in 4/5 of an hour. How many square feet can she paint in one
    5·1 answer
  • I have a question for math but a graph is involved how do I post the graph
    8·1 answer
  • which of the following are solutions to the quadratic equation check all that apply x ^ 2 + 10x + 25 = 7​
    5·2 answers
  • Which equation can be used to solve by completing the square?
    6·1 answer
  • The volume of a cube shaped crate is 27 cubic feet. What is the length of one edge of the crate? Heellllppp!
    15·1 answer
  • A fundraiser lottery draws two winners each month from 50 tickets numbered one through 50 Margaret always puts her age 34 on her
    8·1 answer
  • How do you solve -8 + 5x ≥ -13.
    12·2 answers
  • ANSWER. FIND X IN EACH VALUE
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!