1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paladinen [302]
3 years ago
8

Find the derivative: y={ (3x+1)cos(2x) } / e^2x​

Mathematics
1 answer:
DochEvi [55]3 years ago
6 0

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
pleasee help me,A train travels from station P to station Q at a speed of 90km/h in 3hours 40minutes.The train stops at station
nataly862011 [7]
I think it may be that the train is going too fast zoom km 1600 km at the end
5 0
2 years ago
Tiffany was going on a trip for 7 nights. The plane ticket costs $350. The hotel costs $50 per night. She also spent money buyin
Andrei [34K]

Answer:

the answer is eleven dollars and fifty cents

8 0
2 years ago
Which statement is true ?
podryga [215]

Answer:

d

Step-by-step explanation:

plan 2 grows exponentially so it grows at a faster rate than plan 1, even though plan 1 starts with 100 members

7 0
2 years ago
he graph below shows the cost of pens based on the number of pens in a pack. What would be the cost of one pen? A graph is shown
Tom [10]
1.75! Hope this helps! Could I get brainiest if it is right?
5 0
3 years ago
Read 2 more answers
15. Bradley has a goal to work 28 hours each week at the pizza shop. So far he has
Lina20 [59]
16

28-12=16

He needs 16 more hours of work to complete
7 0
3 years ago
Other questions:
  • Select the correct answer.<br> Which statement is correct with respect to f(x) = -3|x − 1| + 12?
    8·1 answer
  • A publisher sells 10^6 copies of a new book. Each book has 10^2 pages. How many pages total are there in all of the books sold?
    8·1 answer
  • El alquiler de una maquina agraria uesta 100 pesos mas 20 pesos por semana
    11·1 answer
  • Multiply.<br> Your answer should be a monomial in standard form.<br> (-4x2)(7x3)=
    6·2 answers
  • A polynomial of the 5th degree with a leading coefficient of 7 and a constant term of 6
    7·1 answer
  • Which symbol goes in the blank to make this sentence true?
    9·1 answer
  • And the last answer is aslyn did not substitute the correct value for the height in the formula
    13·2 answers
  • If you can these questions hElp <br> I think 7 is B but am not 100% sure
    5·1 answer
  • Question 17 of 25
    7·1 answer
  • PLEASEE ANSWER THIS I BEG ILL ADD U AS BRAINLIST!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!