Answer:
11/50b
Step-by-step explanation:
22% of b = 22/100×b
= 11/50b
Let x=ab=ac, and y=bc, and z=ad.
Since the perimeter of the triangle abc is 36, you have:
Perimeter of abc = 36
ab + ac + bc = 36
x + x + y = 36
(eq. 1) 2x + y = 36
The triangle is isosceles (it has two sides with equal length: ab and ac). The line perpendicular to the third side (bc) from the opposite vertex (a), divides that third side into two equal halves: the point d is the middle point of bc. This is a property of isosceles triangles, which is easily shown by similarity.
Hence, we have that bd = dc = bc/2 = y/2 (remember we called bc = y).
The perimeter of the triangle abd is 30:
Permiter of abd = 30
ab + bd + ad = 30
x + y/2 + z =30
(eq. 2) 2x + y + 2z = 60
So, we have two equations on x, y and z:
(eq.1) 2x + y = 36
(eq.2) 2x + y + 2z = 60
Substitute 2x + y by 36 from (eq.1) in (eq.2):
(eq.2') 36 + 2z = 60
And solve for z:
36 + 2z = 60 => 2z = 60 - 36 => 2z = 24 => z = 12
The measure of ad is 12.
If you prefer a less algebraic reasoning:
- The perimeter of abd is half the perimeter of abc plus the length of ad (since you have "cut" the triangle abc in two halves to obtain the triangle abd).
- Then, ad is the difference between the perimeter of abd and half the perimeter of abc:
ad = 30 - (36/2) = 30 - 18 = 12
Answer:
53.57%
Step-by-step explanation:
We have to calculate first the specific number of events that interest us, if at least 3 are girls, they mean that 2 are boys, therefore we must find the combinations of 3 girls of 5 and 2 boys of 3, and multiply that, so :
# of ways to succeed = 5C3 * 3C2 = 5! / (3! * (5-3)!) * 3! / (2! * (3-2)!)
= 10 * 3 = 30
That is, there are 30 favorable cases, now we must calculate the total number of options, which would be the combination of 5 people from the group of 8.
# of random groups of 5 = 8C5 = 8! / (5! * (8-5)!) = 56
That is to say, in total there are 56 ways, the probability would be the quotient of these two numbers like this:
P (3 girls and 2 boys) = 30/56 = 0.5357
Which means that the probability is 53.57%