Mountain lions with lots of variation because variation is important for species’ survival. If there is an environmental change that negatively affects organisms with a certain trait, variation can insure that the entire species will not be wiped out because some organisms within that species might not have that trait and can survive.
<em>When water is abundant:</em>
-Temporal regulation of stomata is used:
Open during the day
Closed at night
- At night, there is no photosynthesis, so no demand for CO2 inside the leaf.
- Sunny day = demand for CO2 in leaf is high = stomata wide open.
- As there is plenty of water, plant trades water loss for photosynthesis products.
- If the leaf's CO2 concentration is low, the stomata will stay open to continue fueling photosynthesis.
- High temperatures will also signal stomata to close.
- When limited water is available in the soil, plants try to prevent water loss.
The Hertzsprung-Russell diagram is one of the most important tools in the study of stellar evolution. Developed independently in the early 1900's by Ejnar Hertzsprung and Henry Norris Russell, it plots the temperature of stars against their luminosity (the theoretical HR diagram), or the color of stars against their absolute magnitude
Depending on its initial mass, every star goes through specific evolutionary stages dictated by its internal structure and how it produces energy. Each of these stages corresponds to a change in the temperature and luminosity of the star, which can be seen to move to different regions on the HR diagram as it evolves. This reveals the true power of the HR diagram – astronomers can know a star’s internal structure and evolutionary stage simply by determining its position in the diagram.
The Hertzsprung-Russell diagram the various stages of stellar evolution. By far the most prominent feature is the main sequence (grey), which runs from the upper left (hot, luminous stars) to the bottom right (cool, faint stars) of the diagram. The giant branch and supergiant stars lie above the main sequence, and white dwarfs are found below it.
Answer:
mitosis
Explanation:
Gametes are produced by mitosis (not meiosis) and after fertilization a diploid zygote is created. The single zygote cell never grows or divides my mitosis. It can only divide by meiosis to produce haploid cells once more, which then produce the main adult body.