Y=m+6 should be the correct answer
38. 6900 grams
39. 19600 grams
40. 27910 grams
41. 32840 grams
42. 610 grams
43. 970 grams
44. 3712 grams
45. 8937 grams
46. 37 grams
47. 69 grams
48. 1510 grams
49. 4700 grams
50. 150 grams
51. 15 grams
52. 15200 grams
53. 460
I'm sorry if these are wrong but I hope this could help.
The first step is to determine the distance between the points, (1,1) and (7,9)
We would find this distance by applying the formula shown below
![\begin{gathered} \text{Distance = }\sqrt[]{(x2-x1)^2+(y2-y1)^2} \\ \text{From the graph, } \\ x1\text{ = 1, y1 = 1} \\ x2\text{ = 7, y2 = 9} \\ \text{Distance = }\sqrt[]{(7-1)^2+(9-1)^2} \\ \text{Distance = }\sqrt[]{6^2+8^2}\text{ = }\sqrt[]{100} \\ \text{Distance = 10} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B%28x2-x1%29%5E2%2B%28y2-y1%29%5E2%7D%20%5C%5C%20%5Ctext%7BFrom%20the%20graph%2C%20%7D%20%5C%5C%20x1%5Ctext%7B%20%3D%201%2C%20y1%20%3D%201%7D%20%5C%5C%20x2%5Ctext%7B%20%3D%207%2C%20y2%20%3D%209%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B%287-1%29%5E2%2B%289-1%29%5E2%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B6%5E2%2B8%5E2%7D%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B100%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%2010%7D%20%5Cend%7Bgathered%7D)
Distance = 10 units
If one unit is 70 meters, then the distance between both entrances is
70 * 10 = 700 meters
The average can be given by the following formula:
Average = (a1 + a2 + a3 + a4 + a5) / (5).
Equivalently.
Average = (ai) / (i).
Where,
i = 1,2,3,4, ..., n
Substituting
Average = (90 + 85 + 80 + 75 + 75) / (5).
Average = 81
answer:
Average = (a1 + a2 + a3 + a4 + a5) / (5).
or
Average = (ai) / (i).
Where,
i = 1,2,3,4, ..., n
Y = 1 and x = 10
To solve this you cancel out the x's and get -8y=-8.
You find y as 1, plug it back into the equation to get 2x-5=15. Solve and get x=10.