Answer:
a) 28,662 cm² max error
0,0111 relative error
b) 102,692 cm³ max error
0,004 relative error
Step-by-step explanation:
Length of cicumference is: 90 cm
L = 2*π*r
Applying differentiation on both sides f the equation
dL = 2*π* dr ⇒ dr = 0,5 / 2*π
dr = 1/4π
The equation for the volume of the sphere is
V(s) = 4/3*π*r³ and for the surface area is
S(s) = 4*π*r²
Differentiating
a) dS(s) = 4*2*π*r* dr ⇒ where 2*π*r = L = 90
Then
dS(s) = 4*90 (1/4*π)
dS(s) = 28.662 cm² ( Maximum error since dr = (1/4π) is maximum error
For relative error
DS´(s) = (90/π) / 4*π*r²
DS´(s) = 90 / 4*π*(L/2*π)² ⇒ DS(s) = 2 /180
DS´(s) = 0,0111 cm²
b) V(s) = 4/3*π*r³
Differentiating we get:
DV(s) = 4*π*r² dr
Maximum error
DV(s) = 4*π*r² ( 1/ 4*π*) ⇒ DV(s) = (90)² / 8*π²
DV(s) = 102,692 cm³ max error
Relative error
DV´(v) = (90)² / 8*π²/ 4/3*π*r³
DV´(v) = 1/240
DV´(v) = 0,004
Answer:
The circumference is 8π
Step-by-step explanation:
The equation for the circumference of a circle is 2πr
Answer:
(C point Q
Step-by-step explanation:
All you have to do is count 9 to the right of point S. Hope this helps in the future!
Answer:
The value of the length of the side C is 11.49.
Step-by-step explanation:
Cosine formula is applicable.
c² = a² + b² -2abcos(C)
substitute the values:
c² = (5)² + (12)² -2(5)(12)cos(72)
= 25 + 144 - 2 (60) (0.309)
= 169 - 37.08
c² = 131.92
square root both sides:
c = sqrt(131.92)
C = 11.49
Answer:
B
Step-by-step explanation: