Answer:
Let the Dulcina's collection be 'x'
Let the Tremaine collection be 'x-39'
x + x - 39 =129
2x = 129 +39
2x = 168
x = 168/2
x = 84
Dulcina's collection = x = 84
Tremaine's collection = x - 39 = 84 - 39 = 45
Answer:
yeah i did kenn
Step-by-step explanation:
hi
1
So for this, we will be using synthetic division. To set it up, have the equation so that the divisor is -10 (since that is the solution of k + 10 = 0) and the dividend are the coefficients. Our equation will look as such:
<em>(Note that synthetic division can only be used when the divisor is a 1st degree binomial)</em>
- -10 | 1 + 2 - 82 - 28
- ---------------------------
Now firstly, drop the 1:
- -10 | 1 + 2 - 82 - 28
- ↓
- -------------------------
- 1
Next, you are going to multiply -10 and 1, and then combine the product with 2.
- -10 | 1 + 2 - 82 - 28
- ↓ - 10
- -------------------------
- 1 - 8
Next, multiply -10 and -8, then combine the product with -82:
- -10 | 1 + 2 - 82 - 28
- ↓ -10 + 80
- -------------------------
- 1 - 8 - 2
Next, multiply -10 and -2, then combine the product with -28:
- -10 | 1 + 2 - 82 - 28
- ↓ -10 + 80 + 20
- -------------------------
- 1 - 8 - 2 - 8
Now, since we know that the degree of the dividend is 3, this means that the degree of the quotient is 2. Using this, the first 3 terms are k^2, k, and the constant, or in this case k² - 8k - 2. Now what about the last coefficient -8? Well this is our remainder, and will be written as -8/(k + 10).
<u>Putting it together, the quotient is
</u>
Answer:
The bulbs should be replaced each 1436.9 hours.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

How often should the bulbs be replaced so that no more than 1% burn out between replacement periods?
This is the first percentile of hours. So it is X when Z has a pvalue of 0.01.
So it is X when Z = -2.33.




The bulbs should be replaced each 1436.9 hours.
47.12 is the answer please mark as brainliest