Please refer to my image where it shows my work as I’m explaining.
Okay, for system 1:
1. I am using the elimination method to solve. So I check if all the terms are lined up and if any are the same. I found that 2X are common in both equations.
2. The goal is to “eliminate” the term hence the name. So I can choose to add or subtract. I chose subtraction because 2 - 2 equals 0 which is our goal. Solve for the rest of the terms. This will lead to getting y =4. Refer to image for the work.
3. Last step to to find the X value. We do this by picking any of the given equations,then substitute y with 4 and solve to eventually get x = 10. Refer to image for the work.
FOR SYSTEM 2:
1. Again, I am using the elimination method to solve. I noticed that NONE of the terms are in common so I will have to intervene. You can chose any term to create a match with but I chose Y since it was the one I could use the smallest number to multiply with. When multiplying, DONT just multiply Y, multiply ALL the terms in the equation or else everything will crash.
2. Now that I have terms in common I can choose to add or subtract. I chose subtraction because 2-2 equals zero which is what we want. Solve look at image for my process which lead to X = -8
3. Last step is to find the value of Y. Chose any of the given equations in system 2 then substitute x with -8. Refer to image to see process. It lead to y = 20
To check the validity of the answers, substitute the x and y values into both equations both side of the equal side should have the same number. Hope that helped!
Answer:
The teacher should set the score 7 as the lowest passing grade.
Step-by-step explanation:
Let <em>X</em> = number of correct guesses.
All the questions are of true-false format.
The probability of getting a correct answer is, <em>p</em> = 0.50.
The total number of questions is, <em>n</em> = 10.
The random variable <em>X</em> follows a Binomial distribution with parameters <em>n</em> = 10 and <em>p </em>= 0.50.
The probability mass function of <em>X</em> is:

Now the teaches chose the grading scheme such that the probability of passing a student who guesses on every question is less than 0.05.
Then the probability of failing such a students is at least 1 - 0.05 = 0.95.
Compute the probability distribution of <em>X</em>.
Consider the probability distribution attached below.
The value of <em>x</em> for which P (X ≤ x) is at least 0.95 is, <em>x</em> = 7.
So the teacher should set the score 7 as the lowest passing grade.
Answer:
370
Step-by-step explanation:
Isolate the numbers so that you are only dividing sections at a time.
So 25 goes in to 92 three times. so we multiply 25 by three and subtract that from 92. Put the three at the top and repeat throughout.
92-75=17
Bring the next number down and repeat.
Answer:
A: 5
B: 32
C: 3
D; 14
C: 0.333
Step-by-step explanation:
Answer:
sorry
Step-by-step explanation:
i really don't know i'm doing overdue work to