Your answer should be 17 inches.
2.5 + 2.5 = 5 7 + 3 = 10 + 5 + 2 = 17.
I hope this helps answer your question. Have a great day
False.
An exponential growth is a function of the form:
y = A (b) ^ (k * t)
Where,
k> 0
b> 1
Because the value of b> 1 means that the function grows.
Therefore, the answer to the question is false, because if k = 2 but b <1 then the function decreases.
Answer:
False
The answer is 25%
you take (425/1700)*100
0.25 * 100% = 25%
To make it easier, you calculate the volume of the first aquarium.
1st aquarium:
V = L x W x H
V = 8 x 9 x 13
V = 72 x 13
V = 936 in.
Rate: 936 in./2 min.
Now that you've got the volume and rate of the first aquarium, you can find how many inches of the aquarium is filled within a minute, which is also known as the unit rate. To do that, you have to divide both the numerator and denominator by their least common multiple, which is 2. 936 divided by 2 is 468 and 2 divided by 2 is 1.
So the unit rate is 468 in./1 min. Now that you've got the unit rate, you can find out how long it'll take to fill the second aquarium up by finding its volume first.
2nd aquarium:
V = L x W x H
V = 21 x 29 x 30
V = 609 x 30
V 18,270 inches
Calculations:
Now, you divide 18,270 by 468 to find how many minutes it will take to fill up the second aquarium. 18,270 divided by 468 is about 39 (the answer wasn't exact, so I said "about").
2nd aquarium's rate:
18,270 in./39 min.
As a result, it'll take about 39 minutes to fill up an aquarium measuring 21 inches by 29 inches by 30 inches using the same hose. I really hope I helped and that you understood my explanation! :) If I didn't, I'm sorry. I tried. :(
Answer:
I assume that the function is:

Now let's describe the general transformations that we need to use in this problem.
Reflection across the x-axis:
For a general function f(x), a reflection across the x-axis is written as:
g(x) = -f(x)
Reflection across the y-axis:
For a general function f(x), a reflection across the y-axis is written as:
g(x) = f(-x)
Then a reflection across the y-axis, and then a reflection across the x-axis is just:
g(x) = -(f(-x)) = -f(-x)
In this case, we have:

then:

Now we can graph this, to get the graph you can see below: