Answer:
Perimeter: 2(x+3) + 2(x+2)
Step-by-step explanation:
Given:
One linear function represented by the table.
Another linear function represented by the graph.
To find:
The greater unit rate and greater y-intercept.
Solution:
Formula for slope (unit rate):

From the given table it is clear that the linear function passes through (0,5) and (5,15). The function intersect the y-axis at (0,15), so the y-intercept is 15.



So, the unit rate of first function is 2.
From the given graph it is clear that the linear function passes through (0,6) and (-4,0). The function intersect the y-axis at (0,6), so the y-intercept is 6.



So, the unit rate of first function is
.
Now,


And,

Therefore, the greater unit rate of the two functions is 2. The greater y-intercept of the two functions is 15.
just separate the ramge and domain
Answer:
Where is the question?
Step-by-step explanation:
The axis of symmetry of a parabola in the form

is a vertical line

where k is the x coordinate of the vertex of the parabola.
The x coordinate of the vertex of the parabola is given by

which in your case is

So, the axis of symmetry is the line x=12.