Answer:
rent=rs12150
food=rs1480
miscellaneois=rs4860
dave=rs17010
Step-by-step explanation:
48600×25/100
other also so on
and save=total - expenditure
48600-31590
rs17910
plz make me brainliest
Answer:
The lower bound for a 90% confidence interval is 0.2033
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
For this problem, we have that:

90% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The lower bound for a 90% confidence interval is 0.2033
Answer:
he ded
Step-by-step explanation:
\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \tohe no alive because ⇆ω⇆π⊂∴∨α∈\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to![\neq \lim_{n \to \infty} a_n \pi \left \{ {{y=2} \atop {x=2}} \right. \leq \neq \beta \beta \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \geq \geq \leq \leq \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta x_{12 \lim_{n \to](https://tex.z-dn.net/?f=%5Cneq%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cpi%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%5Cleq%20%5Cneq%20%5Cbeta%20%5Cbeta%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Cgeq%20%5Cgeq%20%5Cleq%20%5Cleq%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%5Cbeta%20x_%7B12%20%5Clim_%7Bn%20%5Cto)
Answer:
26 of 200% is 13
Step-by-step explanation:
mark me brainiest
pls and ty
hope this helps!
<em>QUEENOFTARUS</em>
Here is what your answer should of looked like. :)