Answer:
∠D B C = 41°
Step-by-step explanation:
<u><em>Step(i)</em></u>:-
Given ∠ABC = 90°
In diagram ∠D B C + ∠A B D = 90°
6 x+5 + 8 x +1 = 90
14 x + 6 = 90
14 x = 90 -6
14 x = 84
<em> x = 6</em>
<u><em>Step(ii):-</em></u>
∠D B C = 6 x + 5 = 6 (6) +5 = 36 +5 = 41
<em>∠D B C = 41°</em>
<em> ∠A B D = 8(6) +1 = 49°</em>
<em>∠D B C + ∠A B D = 41° + 49° = 90°</em>
Answer:
The ratio representing the tangent of ∠K is 40 : 9.
Step-by-step explanation:
Consider the right-angles triangle KLM below.
The angle M is 90°.
KM = perpendicular (<em>p</em>) = 40
ML = base (<em>b</em>) = 9
LK = hypotenuse (<em>h</em>) = 41
The tangent of an angle is the ratio of the perpendicular length to the length of the base.
Compute the tangent of ∠K as follows:

Thus, the ratio representing the tangent of ∠K is 40 : 9.
Answer:165
Step-by-step explanation:
6•26 = 156. 156+9=165