Answer:
(a) 3.75
(b) 2.00083
(c) 0.4898
Step-by-step explanation:
It is provided that X has a continuous uniform distribution over the interval [1.3, 6.2].
(a)
Compute the mean of X as follows:

(b)
Compute the variance of X as follows:

(c)
Compute the value of P(X < 3.7) as follows:
![P(X < 3.7)=\int\limits^{3.7}_{1.3}{\frac{1}{6.2-1.3}}\, dx\\\\=\frac{1}{4.9}\times [x]^{3.7}_{1.3}\\\\=\frac{3.7-1.3}{4.9}\\\\\approx 0.4898](https://tex.z-dn.net/?f=P%28X%20%3C%203.7%29%3D%5Cint%5Climits%5E%7B3.7%7D_%7B1.3%7D%7B%5Cfrac%7B1%7D%7B6.2-1.3%7D%7D%5C%2C%20dx%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B4.9%7D%5Ctimes%20%5Bx%5D%5E%7B3.7%7D_%7B1.3%7D%5C%5C%5C%5C%3D%5Cfrac%7B3.7-1.3%7D%7B4.9%7D%5C%5C%5C%5C%5Capprox%200.4898)
Thus, the value of P(X < 3.7) is 0.4898.
2000 × 15% = 300
300 × 5 = 1500
2000 - 1500 = 500 population after 5 years
<h3>Given</h3>
4 hundreds flats; 5 tens rods; 2 ones cubes
<h3>Find</h3>
The number of hundreds flats in each of 2 equal piles
<h3>Solution</h3>
When 4 flats are divided into two equal groups, each group will have ...
... 2 flats
_____
You can imagine doing this the way a card dealer might: first put 1 flat in each of 2 piles, then do the same for the remaining 2 flats. Each pile will end up with 2 flats.
— — — — —
You will have a problem if you continue with the tens rods. There is an odd number of those, so one of them will have to be exchanged for 10 ones cubes.
Answer:
Jonas would pay $30.76 dollars
Step-by-step explanation:
$25.00 + 7% + 15% = 30.7625
So we would have to round it so it would be $30.76.
1.5x1/5=.3
half of 1.5 (because of 2 lbs of dried fruit ) is .75
.75+.3=.78 cents for 1 lb