Starting from the fundamental trigonometric equation, we have

Since
, we know that the angle lies in the third quadrant, where both sine and cosine are negative. So, in this specific case, we have

Plugging the numbers, we have

Now, just recall that

to deduce

Answer:
0.75 mg
Step-by-step explanation:
From the question given above the following data were obtained:
Original amount (N₀) = 1.5 mg
Half-life (t₁/₂) = 6 years
Time (t) = 6 years
Amount remaining (N) =.?
Next, we shall determine the number of half-lives that has elapse. This can be obtained as follow:
Half-life (t₁/₂) = 6 years
Time (t) = 6 years
Number of half-lives (n) =?
n = t / t₁/₂
n = 6/6
n = 1
Finally, we shall determine the amount of the sample remaining after 6 years (i.e 1 half-life) as follow:
Original amount (N₀) = 1.5 mg
Half-life (t₁/₂) = 6 years
Number of half-lives (n) = 1
Amount remaining (N) =.?
N = 1/2ⁿ × N₀
N = 1/2¹ × 1.5
N = 1/2 × 1.5
N = 0.5 × 1.5
N = 0.75 mg
Thus, 0.75 mg of the sample is remaining.
I think, not 100% sure, but I think it is square root (A/4pi)=r
Answer:
7.71
Step-by-step explanation:
The diameter is 3, so the arc length is 180/360 * 3pi or 3pi/2. Now you add the 3 in the base, so it is 3pi/2 + 3 or approximately 7.71 (I used a calculator for that).
What types of problems can be solved using the greatest common factor? What types of problems can be solved using the least common multiple? Complete the explanation.
<span>*** Use the words 'same' and 'different' to complete the following sentences.*** </span>
<span>Problems in which two different amounts must be split into (the same) number of groups can be solved using the GCF. Problems with events that occur on (different) schedules can be solved using the LCM.</span>