Answer:
7.89 7.91
Explanation:
The ranges of measurement lie between 7.92-0.05 and 7.92+0.05
7.87g and 7.97g
Answer: conducir la política, acciones y asuntos de (un estado, organización o personas).
During the phase transition vapour --> liquid water, the temperature of the water does not change; the molecules of water release heat and the amounf of heat released is equal to

where
m is the mass of the water

is the latent heat of evaporation.
For water, the latent heat of evaporation is

, while the mass of the water is

so, the amount of heat released in the process is
Answer:

Explanation:
Use the velocity formula to solve

In this question, you are given velocity
, and you are given a distance,
. Time in this question is what you'll need to find.
Start by rearranging the velocity formula, to isolate for t.

Start by multiplying both sides by t

Then divide both sides by v.

Now that you've isolated for time, sub in your values and calculate.

Answer:
<u><em>A.)</em></u> The particles that make up material A have more mass than the
particles that make up material B.
HOPE that helps!!! :)