1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
romanna [79]
4 years ago
13

How much heat is absorbed by a 47g iron skillet when its temperature rises from 12oC to 20oC?

Physics
1 answer:
jolli1 [7]4 years ago
6 0

Answer

169.2 J

Explanation

Given in the question,

mass of iron = 47g

specific heat capacity of iron = 0.450 (J/g 0C)

initial temperature = 12° C

final temperature = 20° C

The energy q needed to increase an object of mass m and specific heat capacity c by a temperature θ is given by:

q = mcΔt

q = 47(0.45)(20-12)

q = 169.2 J

You might be interested in
Từ độ cao 100 m người ta thả một vật thẳng đứng xuống với v = 10 m/s, g = 10 m/s2 . a. Sau bao lâu vật chạm đất. b. Tính vận tốc
Bas_tet [7]

Answer:

10 points dapat yawa aman daw gud

3 0
3 years ago
Read 2 more answers
Suppose a 4.0-kg projectile is launched vertically with a speed of 8.0 m/s. What is the maximum height the projectile reaches?
eduard

Answer:

h = 3.3 m (Look at the explanation below, please)

Explanation:

This question has to do with kinetic and potential energy. At the beginning (time of launch), there is no potential energy- we assume it starts from the ground. There, is, however, kinetic energy

Kinetic energy = \frac{1}{2}mv^{2}

Plug in the numbers = \frac{1}{2}(4.0)(8^{2})

Solve = 2(64) = 128 J

Now, since we know that the mechanical energy of a system always remains constant in the absence of outside forces (there is no outside force here), we can deduce that the kinetic energy at the bottom is equal to the potential energy at the top. Look at the diagram I have attached.

Potential energy = mgh = (4.0)(9.8)(h) = 39.2(h)

Kinetic energy = Potential Energy

128 J = 39.2h

h = 3.26 m

h= 3.3 m (because of significant figures)

7 0
3 years ago
In the "before" part of Fig. 9-60, car A (mass 1100 kg) is stopped at a traffic light when it is rear-ended by car B (mass 1400
liq [111]

Complete Question:

In the "before" part of Fig. 9-60, car A (mass 1100 kg) is stopped at a traffic light when it is rear-ended by car B (mass 1400 kg). Both cars then slide with locked wheels until the frictional force from the slick road (with a low ?k of 0.15) stops them, at distances dA = 6.1 m and dB = 4.4 m. What are the speeds of (a) car A and (b) car B at the start of the sliding, just after the collision? (c) Assuming that linear momentum is conserved during the collision, find the speed of car B just before the collision.

Answer:

a) Speed of car A at the start of sliding = 4.23 m/s

b) speed of car B at the start of sliding = 3.957 m/s

c) Speed of car B before the collision = 7.28 m/s

Explanation:

NB: The figure is not provided but all the parameters needed to solve the question have been given.

Let the frictional force acting on car A, f_{ra} = \mu mg\\............(1)

Since frictional force is a type of force, we are safe to say f_{ra} = ma.......(2)

Equating (1) and (2)

ma = \mu mg\\a = \mu g\\\mu = 0.15\\a = 0.15 * 9.8 = 1.47 m/s^{2}

a) Speed of A at the start of the sliding

d_{A} = 6.1 m\\Speed of A at the start of sliding, v_{A} = \sqrt{2ad_{A} }\\ v_{A} = \sqrt{2*1.47*6.1 } \\v_{A} = \sqrt{17.934 } \\v_{A} = 4.23 m/s

b) Speed of B at the start of the sliding

d_{A} = 4.4 m\\Speed of A at the start of sliding, v_{B} = \sqrt{2ad_{B} }\\ v_{B} = \sqrt{2*1.47*4.4 } \\v_{B} = \sqrt{12.936 } \\v_{B} = 3.957 m/s

Let the speed of car B before collision = v_{B1}

Momentum of car B before collision = m_{B} v_{B1}

Momentum after collision = m_{A} v_{A} + m_{B} v_{B2}

Applying the law of conservation of momentum:

m_{B} v_{B1}  = m_{A} v_{A} +m_{B} v_{B2}

m_{A} = 1100 kg\\m_{B} = 1400 kg

(1400*v_{B1} ) = (1100 * 4.23) + ( 1400 * 3.957)\\(1400*v_{B1} ) = 10192.8\\v_{B1} = 10192.8/1400\\v_{B1 = 7.28 m/s

3 0
4 years ago
Read 2 more answers
The mass of the bicycle and rider is 60 kg and the total area of the tyres in contact with
AleksAgata [21]

Answer:

a little

Explanation:

First of all, it's not how you spell "tyres", it is tires.

Second of all, you already know the Mass so what you need to find out now is  contact the road. You Know that your number and letter are squared so that would turn into 6m x 2.4. Then you do the math do continue on to finish it. Have a great day!! Good luck with the answer!!

3 0
3 years ago
Which of the following is equal to an impulse of 15 units?
strojnjashka [21]

Answer:

B) Force = 7.5, Time = 2 is equal to an impulse of 15 units

3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the phase ϕ(x,t) of the wave? Express the phase in terms of one or more given variables (A, k, x, t, and ω) and any need
    6·1 answer
  • What is the power of a light bulb that has<br> a resistance of 190 ohms in a 120 v circuit?
    12·2 answers
  • In atoms, electrons surround the nucleus in
    13·1 answer
  • In Haiti, public transportation is often by taptaps, small pickup trucks with seats along the sides of the pickup bed and railin
    15·1 answer
  • 1. A train is moving north at 5 m/s on a straight track. The engine is causing it to accelerate northward at 2 m/s^2.
    10·1 answer
  • A car weighing 19600N is moving with a speed of 30 m/sec on a level road. If it is brought to rest in a distance of 100 m. Find
    10·1 answer
  • A classic demonstration illustrating eddy currents is performed by dropping a permanent magnet inside a conducting cylinder. The
    11·1 answer
  • Determine how would the frequency of the pendulum change if it was taken to the moon by finding the ratio of its frequency on th
    14·1 answer
  • How does the time of flight differ between an object launched from a height parallel to ground and an object launched from the g
    6·1 answer
  • What are usability heuristics?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!