Answer:
The sequences which are geometric are
16,-8,4,-2,1
625,125,25,5,1
-15,-18,-21.6,-25.92,-31.104
Step-by-step explanation:
Geometric sequences are ones in which you multiply or divide to get the next terms in the sequence.
Cheers
Answer:
The sample consisting of 64 data values would give a greater precision.
Step-by-step explanation:
The width of a (1 - <em>α</em>)% confidence interval for population mean μ is:

So, from the formula of the width of the interval it is clear that the width is inversely proportion to the sample size (<em>n</em>).
That is, as the sample size increases the interval width would decrease and as the sample size decreases the interval width would increase.
Here it is provided that two different samples will be taken from the same population of test scores and a 95% confidence interval will be constructed for each sample to estimate the population mean.
The two sample sizes are:
<em>n</em>₁ = 25
<em>n</em>₂ = 64
The 95% confidence interval constructed using the sample of 64 values will have a smaller width than the the one constructed using the sample of 25 values.
Width for n = 25:
Width for n = 64:
![\text{Width}=2\cdot z_{\alpha/2}\cdot \frac{\sigma}{\sqrt{64}}=\frac{1}{8}\cdot [2\cdot z_{\alpha/2}\cdot \sigma]](https://tex.z-dn.net/?f=%5Ctext%7BWidth%7D%3D2%5Ccdot%20z_%7B%5Calpha%2F2%7D%5Ccdot%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7B64%7D%7D%3D%5Cfrac%7B1%7D%7B8%7D%5Ccdot%20%5B2%5Ccdot%20z_%7B%5Calpha%2F2%7D%5Ccdot%20%5Csigma%5D)
Thus, the sample consisting of 64 data values would give a greater precision
Answer:
$25 a lamp
Step-by-step explanation:
First divide $10,000 by 500 lamps to find how much one of them cost
That is $20 a lamp so then multiply .25 *20 or 1/4 *20
you get 5 than add 20 +5=25
Answer:
Equivalent fractions
Step-by-step explanation:
Answer:
![\sqrt[7]{y}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7By%7D)
Step-by-step explanation:
The rule for a fraction as an exponet is:
![a^{\frac{b}{c}}=\sqrt[c]{x^b}](https://tex.z-dn.net/?f=a%5E%7B%5Cfrac%7Bb%7D%7Bc%7D%7D%3D%5Csqrt%5Bc%5D%7Bx%5Eb%7D)
Apply the rule to the expression given:
![y^{\frac{1}{7}}=\boxed{\sqrt[7]{y}}](https://tex.z-dn.net/?f=y%5E%7B%5Cfrac%7B1%7D%7B7%7D%7D%3D%5Cboxed%7B%5Csqrt%5B7%5D%7By%7D%7D)
Hope this helps you.