Answer: The question is is not complete...here is the complete question.
Which of the following reagents should be used to convert 3-Hexyne to E-3-hexene
Option B.
Na, liquid NH3.
Explanation:
3-Hexyne to E-3-hexene can be converted with by using the reagent of Na, NH3 (birch reduction) and this can be done by hdrogenation of H2.
The reagents NaNH3 convert 3-Hexyne to E-3-hexene because it is a reducing agents that convert or has the ability to reduce alkynes to trans alkenes.
3 Hexyne is an alkynes and it is converted to E- 3 hexene Na and NH3.
Answer is: They orbit the central nucleus in discrete paths.
According to the Bohr model of the atom:
1. Electrons orbit the nucleus in orbits that have a set size and energy.
2. Energy levels of electrons are discrete (certain discrete values of energy).
3. Electrons can jump from one energy level to another, absorbing or emitting electromagnetic radiation with a frequency ν (energy difference of the levels).
Electrons attract objects and pull toward
Answer: One technique we can use to measure the amount of heat involved in a chemical or physical process is known as calorimetry. Calorimetry is used to measure amounts of heat transferred to or from a substance. To do so, the heat is exchanged with a calibrated object (calorimeter). The change in temperature of the measuring part of the calorimeter is converted into the amount of heat (since the previous calibration was used to establish its heat capacity). The measurement of heat transfer using this approach requires the definition of a system (the substance or substances undergoing the chemical or physical change) and its surroundings (the other components of the measurement apparatus that serve to either provide heat to the system or absorb heat from the system). Knowledge of the heat capacity of the surroundings, and careful measurements of the masses of the system and surroundings and their temperatures before and after the process allows one to calculate the heat transferred as described in this section.
Explanation: