Answer : The value of equilibrium constant for this reaction at 262.0 K is 
Explanation :
As we know that,

where,
= standard Gibbs free energy = ?
= standard enthalpy = -45.6 kJ = -45600 J
= standard entropy = -125.7 J/K
T = temperature of reaction = 262.0 K
Now put all the given values in the above formula, we get:


The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = -12666.6 J
R = gas constant = 8.314 J/K.mol
T = temperature = 262.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:


Therefore, the value of equilibrium constant for this reaction at 262.0 K is 
Answer:
It would Newton's third law.
Explanation:
Absorbance measures the ability of the substance to absorb light at a specific wavelength.
Absorbance is also equal to the product of molar absorptivity, path length and molar concentration.
The mathematical expression is given as:
(1)
where, A = absorbance
= molar absorptivity
l = path length
c = molar concentration.
The above formula is said to Beer's Law.
Absorptivity of protein x = 
Path length = 1 cm
Molar concentration = 
Put the values in formula (1)

= 
Thus, absorbance at 280 nm = 
Answer:
27.98g/mol
Explanation:
Using ideal gas law equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
T = temperature (K)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
According to the information given:
V = 2.5L
P = 1.4 atm
T = 282K
n = ?
Using PV = nRT
n = PV/RT
n = 1.4 × 2.5/0.0821 × 282
n = 3.5/23.1522
n = 0.151mol
Using the formula to calculate molar mass of the elemental gas:
mole = mass/molar mass
Molar mass = mass/mole
Molar mass = 4.23g ÷ 0.151mol
Molar mass = 27.98g/mol
Caused my motion energy or body heat when you move.