The empirical formula is
.
<u>Explanation:</u>
Putrescine has the elements like Carbon, Nitrogen and Hydrogen present in them. So in order to determine the empirical formula, we first have to find the number of moles present in the putrescine. As the percentage of C, H and N present in the chemical is given as 54.50%, 13.73% and 31.77%, we assume that 100 g of Putrescine is taken as sample.
Then the mass of C, H and N present in Putrescine will be 54.50 g, 13.73 g and 31.77 g. We know that the molar mass of C is 12 g/mol, H is 1 g/mol and N is 14 g/mol. So divide the mass with the molar mass of the respective elements to determine the number of moles of these elements present in the sample.
<u></u>
<u></u>
Similarly, the number of moles of H and N present is determined.


Then the empirical formula can be determined by dividing the number of moles of all elements with the least number of moles that is 2.27.

So, the empirical formula is
.
Answer:
The answer is
<h3>6000 N/m² or 6000 Pa</h3>
Explanation:
The pressure exerted by an object given the force of the object and the area can be found by using the formula

where
P is the pressure
f is the force
a is the area
From the question
f = 2400 N
a = 0.4 m²
So we have

We have the final answer as
<h3>6000 N/m² or 6000 Pa</h3>
Hope this helps you
The correct answer is option A. Energy cannot be created during an ordinary chemical reaction. There is no such thing as an ordinary chemical reaction. Energy cannot be created or destroyed this is according to the law of conservation of energy. It can only be transformed from one form to another form.
You'll need the specific heat capacity of aluminium to solve this question.
H=(0.005)(37-22)(specific heat capacity of aluminium)
Answer:
C₅H₁₀O₅
Explanation:
1. Calculate the mass of each element in 2.78 mg of X.
(a) Mass of C

(b) Mass of H

(c) Mass of O
Mass of O = 3.5 - 1.400 - 0.2349 = 1.87 g
2. Calculate the moles of each element

3. Calculate the molar ratios
Divide all moles by the smallest number of moles.

4. Round the ratios to the nearest integer
C:H:O = 1:2:1
5. Write the empirical formula
The empirical formula is CH₂O.
6. Calculate the molecular formula.
EF Mass = (12.01 + 2.016 + 16.00) u = 30.03 u
The molecular formula is an integral multiple of the empirical formula.
MF = (EF)ₙ

MF = (CH₂O)₅ = C₅H₁₀O₅
The molecular formula of X is C₅H₁₀O₅.