Answer:
Q. 2 (d)
Step-by-step explanation:
4/3 x + 4 2/3
2(2/3)(x) + 14/3
2(2/3)(x) + 7(2/3)
take (2/3) common
2/3 (2x + 7)
ANSWER!
Answer: I think A
Step-by-step explanation:
Isolate the variable by dividing each side by factors that don't contain the variable.
x = 2 √ 3 , − 2 √ 3
Step-by-step explanation:
Firstly, we have to find m∠J.
Since all the angles of a Δ equal 180°, angles J, L, and K should have a sum of 180°.
So,
m∠J + m∠L + m∠K = 180°
The diagram shows us that ∠L = 49° and ∠K = 90°, so we plug in those numbers in the equation.
m∠J + 49° + 90° = 180°
Then we simplify
m∠J + 139° = 180°
Subtract 139° to both sides
∠J = 41
Now the other angles.
Since ΔJKL ~ ΔRST, then ∠J ≅ ∠R, ∠K ≅ ∠S, and ∠L ≅ ∠T
Meaning, m∠J = m∠R, m∠K = m∠S, and m∠L = m∠T
Since we know m∠J = 41°, m∠K = 90°, and m∠L = 49° we could plug those in so...
41° = m∠R , 90° = m∠S , and 49° = m∠T
Answer:
The perimeter (to the nearest integer) is 9.
Step-by-step explanation:
The upper half of this figure is a triangle with height 3 and base 6. If we divide this vertically we get two congruent triangles of height 3 and base 3. Using the Pythagorean Theorem we find the length of the diagonal of one of these small triangles: (diagonal)^2 = 3^2 + 3^2, or (diagonal)^2 = 2*3^2.
Therefore the diagonal length is (diagonal) = 3√2, and thus the total length of the uppermost two sides of this figure is 6√2.
The lower half of the figure has the shape of a trapezoid. Its base is 4. Both to the left and to the right of the vertical centerline of this trapezoid is a triangle of base 1 and height 3; we need to find the length of the diagonal of one such triangle. Using the Pythagorean Theorem, we get
(diagonal)^2 = 1^2 + 3^2, or 1 + 9, or 10. Thus, the length of each diagonal is √10, and so two diagonals comes to 2√10.
Then the perimeter consists of the sum 2√10 + 4 + 6√2.
which, when done on a calculator, comes to 9.48. We must round this off to the nearest whole number, obtaining the final result 9.