1. The signs of the velocities of the balls were changed, this is a result of the elastic collision between the two balls. The law involved in here is the Law of Interaction.
2. During the elastic collision, the momentum is conserved.
3. The velocity would be lower. There is a tendency for these balls to stick together.
Answer:
F = 5702.56 N
Explanation:
Given that,
Mass of a small car, m = 800 kg
Initial speed of the car, u = 27.8 m/s
Final speed, v = 0
Time, t = 3.9 s
We need to find the force did it take for the car to stop.
The force acting on an object is given by :

So, the magnitude of force acting on the car to stop is 5702.56 N.
Answer:
I₂ = 25.4 W
Explanation:
Polarization problems can be solved with the malus law
I = I₀ cos² θ
Let's apply this formula to find the intendant intensity (Gone)
Second and third polarizer, at an angle between them is
θ₂ = 68.0-22.2 = 45.8º
I = I₂ cos² θ₂
I₂ = I / cos₂ θ₂
I₂ = 75.5 / cos² 45.8
I₂ = 155.3 W
We repeat for First and second polarizer
I₂ = I₁ cos² θ₁
I₁ = I₂ / cos² θ₁
I₁ = 155.3 / cos² 22.2
I₁ = 181.2 W
Now we analyze the first polarizer with the incident light is not polarized only half of the light for the first polarized
I₁ = I₀ / 2
I₀ = 2 I₁
I₀ = 2 181.2
I₀ = 362.4 W
Now we remove the second polarizer the intensity that reaches the third polarizer is
I₁ = 181.2 W
The intensity at the exit is
I₂ = I₁ cos² θ₂
I₂ = 181.2 cos² 68.0
I₂ = 25.4 W
Answer:
Its a ceramic
Explanation:
Brick does not contain any metal so it couldnt be an alloy.
Answer:
Diffraction: Wave Theory
Interference: Wave Theory
Reflection: both particles and wave theories
Refraction: both particles and wave theories