Heavy crate sits at rest on the floor of a warehouse. you push on the crate with a force of 400 N, and it doesn't budge. The magnitude of the friction force on the crate in Newton is 400N
This is due to Friction force, which is defined as the resisting force that acts on a body when it is at rest (Static friction) or when it is in motion (Kinetic friction).
When a force is applied on a stationary body, the force of static friction starts to act on the body which prevents any relative motion between the object and surface. The magnitude of friction increases up to μsN, where μs is the coefficient of static friction. As the crate didn't budge, it means the amount of force applied was less than μsN. Hence the force applied was canceled by an equal and opposite amount of frictional force which was equal to 400N.
Learn more about frictional force here
brainly.com/question/1714663
#SPJ4
Below are the answers:
a. There is a constant magnetic Feld, which means B is constant, so we can rewrite the change in fux as above.Because ΔA is positive, there will be a negative emf in the loop, corresponding to an induced magnetic momentpointing to the left on the page. The current in the loop will be into the page at the top and out of the page at<span>the bottom
</span>V=-Δφ/ Δt = -B·ΔA/ Δ<span>t
b. </span>As the loop’s radius is increasing, we can think about individual electrons in the wire loop as moving radially<span>outward. We’ll consider one in the top of the loop (which is moving up the page). Using the Lorentz ²orce Law
</span>F=q(~v⇥~B)=qvB(ˆy⇥ˆx)=-qvB<span>ˆ
</span>Constant forces pointing into the center of the loop will result in circular orbits (around the wire). Because the<span>force is pointing into the center of the loop, we know we have positive current at that point (into the page).</span>
Answer:
Carbon dioxide (CO2)
Explanation:
Carbon dioxide (CO2) makes up the vast majority of greenhouse gas emissions from the sector, but smaller amounts of methane (CH4) and nitrous oxide (N2O) are also emitted. These gases are released during the combustion of fossil fuels, such as coal, oil, and natural gas, to produce electricity.
The answer is, "B", "Ammonia".
<u>Answer:</u> The ball is travelling with a speed of 5.5 m/s after hitting the <u>bottle.</u>
<u>Explanation:</u>
To calculate the speed of ball after the collision, we use the equation of law of conservation of momentum, which is given by:

where,
are the mass, initial velocity and final velocity of ball.
are the mass, initial velocity and final velocity of bottle.
We are given:

Putting values in above equation, we get:

Hence, the ball is travelling with a speed of 5.5 m/s after hitting the bottle.