D)y=1/4x represents a proportional relationship
24= 3*2^3
88= 11*2^3
664= 83*2^3 -> 83=11+72 = 11 + 2^3*3^2
664=2^3 (11+2^3*3^2) = 88 +(2^3*2^3*3^2) = 88 +(24^2)
8408= 1051 * 2^3 -> 1051= 83+968 -> 968 = 2^3 * 11^2
8408= 2^3 (83+2^3*11^2) = 664 +(2^3*2^3*11^2) = 664 +(88^2)
So:
a(n) = a(n-1) + a(n-2)^2
Lets check: 88+24^2= 664
664+88^2= 8408
Yh can we please stop with all these links they don’t help at all
Answer:
j
Step-by-step explanation:
Substitute the given values into x² + x + 1 and check if result is prime
x = - 4
(- 4)² - 4 + 1 = 16 - 4 + 1 = 13 ← prime
(- 2)² - 2 + 1 = 4 - 2 + 1 = 3 ← prime
(- 3)² - 3 + 1 = 9 - 3 + 1 = 7 ← prime
4² + 4 + 1 = 16 + 4 + 1 = 21 ← not prime
x = 4 serves as a counterexample to disprove this conclusion
To solve for x
bx=-7
divide b on both sides
x=-7/b
to solve for b
bx=-7
divide x on both sides
b=-7/x