Check the picture below.
now, we have a triangle with all three sides, thus we can use Heron's Area Formula on the triangle.
![\bf \qquad \textit{Heron's area formula} \\\\ A=\sqrt{s(s-a)(s-b)(s-c)}\qquad \begin{cases} s=\frac{a+b+c}{2}\\[-0.5em] \hrulefill\\ a=10\\ b=26.695\\ c=22\\ s=29.3475 \end{cases} \\\\\\ A=\sqrt{29.3475(29.3475-10)(29.3475-26.695)(29.3475-22)} \\\\\\ A=\sqrt{29.3475(19.3475)(2.6525)(7.3475)}\implies A\approx \sqrt{11066.007} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill A\approx 105.195~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Ctextit%7BHeron%27s%20area%20formula%7D%20%5C%5C%5C%5C%20A%3D%5Csqrt%7Bs%28s-a%29%28s-b%29%28s-c%29%7D%5Cqquad%20%5Cbegin%7Bcases%7D%20s%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D10%5C%5C%20b%3D26.695%5C%5C%20c%3D22%5C%5C%20s%3D29.3475%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Csqrt%7B29.3475%2829.3475-10%29%2829.3475-26.695%29%2829.3475-22%29%7D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Csqrt%7B29.3475%2819.3475%29%282.6525%29%287.3475%29%7D%5Cimplies%20A%5Capprox%20%5Csqrt%7B11066.007%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20A%5Capprox%20105.195~%5Chfill)
You subtract negative 4 and negative 12...think in a number line and you find negative 4 and then you decrease( which means you move to your left of the number line) and find negative 12 and then you count the spaces you took to get to negative 12
Circle A is missing, so i have attached it.
Answer:
∠XYZ = 35°
Step-by-step explanation:
We want to find the angle ∠XYZ in the image attached.
To solve that, we will use the formula in the theorem for angle formed by secants or tangents. Thus;
∠XYZ = ½(arc WZ - arc XZ)
From the image, arc WZ = 175° and arc XZ = 105°
Thus;
∠XYZ = ½(175 - 105)
∠XYZ = ½(70)
∠XYZ = 35°
Answer:
6.91 times 6.91 equals 47.7481
47.7481 times π equals 150.005080183
to the second digit this is
150.01
It’s b.
because it’s would be 180-45