Answer : The enthalpy of combustion per mole of
is -2815.8 kJ/mol
Explanation :
Enthalpy change : It is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28reactant%29%5D)
The equilibrium reaction follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(n_{(CO_2)}\times \Delta H^o_f_{(CO_2)})+(n_{(H_2O)}\times \Delta H^o_f_{(H_2O)})]-[(n_{(C_6H_{12}O_6)}\times \Delta H^o_f_{(C_6H_{12}O_6)})+(n_{(O_2)}\times \Delta H^o_f_{(O_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%28n_%7B%28CO_2%29%7D%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%29%7D%29%2B%28n_%7B%28H_2O%29%7D%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%29%7D%29%5D-%5B%28n_%7B%28C_6H_%7B12%7DO_6%29%7D%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_6H_%7B12%7DO_6%29%7D%29%2B%28n_%7B%28O_2%29%7D%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28O_2%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(6\times -393.5)+(6\times -285.8)]-[(1\times -1260)+(6\times 0)]=-2815.8kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%286%5Ctimes%20-393.5%29%2B%286%5Ctimes%20-285.8%29%5D-%5B%281%5Ctimes%20-1260%29%2B%286%5Ctimes%200%29%5D%3D-2815.8kJ%2Fmol)
Therefore, the enthalpy of combustion per mole of
is -2815.8 kJ/mol
Answer: (C)
The frequency increases as the wavelength decreases
Explanation:
The relation between the frequency and wavelength of a wave is
Frequency = 1 / Wavelength
The Frequency of electromagnetic wave is inversely proportional to the wavelength. So, as the frequency increases, the wavelength of the wave decreases and vise-versa.
The frequency of a wave is number of complete cycles passing a particular point per second. Its S.I unit is Hertz whereas the wavelength of a wave is the distance between two consecutive crest and trough in meters.
So, on increasing the frequency of a wave, there will be more number of the cycles of wave per second which will decrease the distance between the consecutive crest and trough i.e wavelength.
Answer:
the answer is
0.1342 mL
hope that will help you ❤️
The scientist that was the first to use the telescope in astronomy was Newton