Answer:
Because animals cannot produce energy directly from the sun, they must eat plants or other animals that eat plants, and acquire energy, either directly or indirectly, from glucose
Explanation:
They both need nutrients and are able to reproduce
Answer:
1. The difference between the normal hemoglobin protein DNA sequence and the sickle cell hemoglobin DNA sequence is a base to base shift, in this case adenine (GAG) to thymine (GTG).
2. The difference affects the amino acid sequence of the protein by replacing glutamic acid (Glu) with valine (Val).
Explanation:
In sickle cell anemia, a change in the DNA nucleotide sequence is observed, where adenine is substituted by thymine, whose expression is the change in the amino acid sequence of globine β, incorporating valine instead of glutamic acid. This represents a molecular mutation - point mutation - by subtitution, which corresponds to missense mutation.
<u>Normal hemoglobin protein in a RBC</u>
DNA CTG ACT CCT GAG GAG AAG TCT
Amino acids Leu Thr Pro Glu Glu Lys Ser
<u>Sickle cell hemoglobin protein in a RBC</u>
DNA CTG ACT CCT <em>GTG</em> GAG AAG TCT
Amino acids Leu Thr Pro <em>Val</em> Glu Lys Ser
When GAG is transcribed to mRNA, the CUC codon is obtained, which codes for glutamic acid. Thymine substitution causes the DNA sequence to change to GTG, which is transcribed as CAC, the codon that encodes the amino acid valine. The <u>change from glutamic acid to valine in β-globin causes an altered hemoglobin, giving the abnormal erythrocytes observed in sickle cell disease</u>.
We generally say that you get 3 ATPs per NADH and 2 per FADH2, so that these carriers produce a total of 30+4 = 34 ATPs..... and the Krebs cycle itself produces 2 GTPs, which are equivalent to 2 more ATPs, for a total of 38.
Answer: The blood vessels in the umbilical cord, the fetus receives all the necessary nutrition, oxygen, and life support from the mother through the placenta.
Explanation: