1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mama L [17]
3 years ago
9

Tools -

Mathematics
1 answer:
rosijanka [135]3 years ago
7 0

Answer:

48

Step-by-step explanation:

You might be interested in
Combine the like terms to create an equivalent expression:<br>-5r+8r+5​
Olegator [25]
Answer : 3r+5 hope this helps!
3 0
3 years ago
3. Sam and Tim each have savings accounts. Every month they each put in some of their
Setler [38]

Answer:

y = 30x +50 --- Sam

y = 20x +80 --- Tim

Step-by-step explanation:

Given

Sam                         Tim

х  --- f(x) ---------------  g(x)

1  --- 80   --------------- 100

2  --- 110  --------------- 120

3  --- 140 --------------- 140

4 --- 170 -------------- 160

Required

Determine the y value

y value implies the equation of the table

Calculating the equation of Sam

First, we need to take any corresponding values of x and y

(x_1,y_1) = (1,80)

(x_2,y_2) = (4,170)

Next, we calculate the slope (m)

m = \frac{y_2 - y_1}{x_2 - x_1}

m = \frac{170 - 80}{4 - 1}

m = \frac{90}{3}

m = 30

Next, we calculate the line equation using:

y - y_1=m(x-x_1)

y - 80 = 30(x - 1)

y - 80 = 30x - 30

Make y the subject

y = 30x - 30 + 80

y = 30x +50

Calculating the equation of Tim

First, we need to take any corresponding values of x and y

(x_1,y_1) = (1,100)

(x_2,y_2) = (4,160)

Next, we calculate the slope (m)

m = \frac{y_2 - y_1}{x_2 - x_1}

m = \frac{160 - 100}{4 - 1}

m = \frac{60}{3}

m = 20

Next, we calculate the line equation using:

y - y_1=m(x-x_1)

y - 100 = 20(x - 1)

y - 100 = 20x - 20

Make y the subject

y = 20x - 20+100

y = 20x +80

7 0
3 years ago
No links pls
asambeis [7]

Answer:

Positive 1 over 6 raised to the 2nd power 1/62 or 1 over 36 which is 1/36. To find -6-2, take the inverse of -62.

(first find -62) -62 = -6 * -6 = 36

(then take the inverse of 36, which is 1 over 36) = 1 / 36 = 0.0277

so, -6-2 =0.0277

Step-by-step explanation:

3 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
100 POINTS
IgorLugansk [536]

Answer:

Step-by-step explanation:

90.9^2 - 21.2^2 = b^2

8,262.81 - 449.44 = b^2

b = 88.39326897450959189749074160142

7 0
3 years ago
Other questions:
  • The tens digit is missing from the three digit number 8_9. If the tens digit is to be randomly selected from the ten different d
    8·2 answers
  • What is the smallest integer greater than the square root of 68?
    14·2 answers
  • Help ASAP please and explain tooo
    10·1 answer
  • The lateral area of a cone is 612 pi the radius is 14.2 what is the slant height
    9·2 answers
  • Simplify 2.8d-6+3.8-3.1d
    5·1 answer
  • Please help me with this
    7·1 answer
  • An auditorium has 28 seats in the front row. Each row behind the front has 3 more seats than the row directly in front of it. Ho
    13·1 answer
  • Write the number in standard form and expanded form. Three million four hundred eighty- seven thousand six hundred fifty-one​
    8·1 answer
  • Tina brought $37.75 to the art supply store. She bought a brush, a sketchbook, and a paint set. The brush was 1 6 as much as the
    11·1 answer
  • Match each scenario with the tax it is describing by putting the correct number next t
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!