Answer:
D. -11/12
Step-by-step explanation:
Answer:



Step-by-step explanation:
Number of Men, n(M)=24
Number of Women, n(W)=3
Total Sample, n(S)=24+3=27
Since you cannot appoint the same person twice, the probabilities are <u>without replacement.</u>
(a)Probability that both appointees are men.

(b)Probability that one man and one woman are appointed.
To find the probability that one man and one woman are appointed, this could happen in two ways.
- A man is appointed first and a woman is appointed next.
- A woman is appointed first and a man is appointed next.
P(One man and one woman are appointed)

(c)Probability that at least one woman is appointed.
The probability that at least one woman is appointed can occur in three ways.
- A man is appointed first and a woman is appointed next.
- A woman is appointed first and a man is appointed next.
- Two women are appointed
P(at least one woman is appointed)

In Part B, 
Therefore:

Answer:
The drawing is a little hard to see.
Step-by-step explanation:
Basically you just multiply 2.50 by the other factor.
Explanation:
The Law of Sines is your friend, as is the Pythagorean theorem.
Label the unmarked slanted segments "a" and "b" with "b" being the hypotenuse of the right triangle, and "a" being the common segment between the 45° and 60° angles.
Then we have from the Pythagorean theorem ...
b² = 4² +(2√2)² = 24
b = √24
From the Law of Sines, we know that ...
b/sin(60°) = a/sin(θ)
y/sin(45°) = a/sin(φ)
Solving the first of these equations for "a" and the second for "y", we get ...
a = b·sin(θ)/sin(60°)
and ...
y = a·sin(45°)/sin(φ)
Substituting for "a" into the second equation, we get ...
y = b·sin(θ)/sin(60°)·sin(45°)/sin(φ) = (b·sin(45°)/sin(60°))·sin(θ)/sin(φ)
So, we need to find the value of the coefficient ...
b·sin(45°)/sin(60°) = (√24·(√2)/2)/((√3)/2)
= √(24·2/3) = √16 = 4
and that completes the development:
y = 4·sin(θ)/sin(φ)
Answer:
X=16
Step-by-step explanation:
1/4x-1=3
1/4x=3+1
1/4x=4
(4)1/4x=4(4)
x=16