The answer is two and four hope this helps
Answer:
RNA polymerase binds to the promoter
Polymerase initiates RNA synthesis at the start point on the template strand
RNA polymerase moves downstream unwinding the DNA
RNA transcript is released and polymerase detaches from the DNA
The pre-RNA undergoes processing
Explanation:
The promoter is the specific DNA sequence that serves as a binding site for RNA polymerase. The enzyme RNA polymerase recognizes the promoter sequence and binds to it to begin the process of RNA synthesis. The process of RNA synthesis begins at the start site where the process of the unwinding of DNA duplex is initiated.
The unwinding separates the two DNA strands at the start site where RNA polymerase begins the process of synthesis of the new RNA strand. The newly formed RNA strand and RNA polymerase are released from the template strand after the termination of the process.
In eukaryotes, the primary RNA transcript undergoes the process of splicing of introns, the addition of poly-A tails and 5' cap which in turn transform it into the mature mRNA.
<u>Answer:</u>
<em>The dissolved gases produce violent eruption as they escape.
</em>
<u>Explanation:</u>
Magma contains dissolved gases and these dissolved gases induce vapor <em>pressure on the magma.</em> The magma is able to remain in the dissolved state itself without erupting because this vapor pressure is less than the confining pressure of the <em>rock surrounding the magma. </em>
One the vapor pressure exceeds this confining pressure the dissolved gases begin to expand and<em> forms small gas bubbles</em>.
The <em>density of these gas bubbles</em> called vesicles is less than the density of magma and thus naturally tries to push out. When the gas bubbles escape the magma is also pushed out. Thus greater <em>amount of dissolved gases result in violent eruptions.
</em>
"
Answer:
lacks a well defined nucleus
lacks cell organelles.
I think that the answer is: true